
DOCUMENT RESUME

ED 476 861 TM 034 955

AUTHOR Levy, Roy; Mislevy, Robert J.

TITLE Specifying and Refining a Complex Measurement Model.

PUB DATE 2003-04-00

NOTE 83p.; Paper presented at the Annual Meeting of the National
Council on Measurement in Education (Chicago, IL, April 22-
24, 2003).

PUB TYPE Reports Descriptive (141) Speeches/Meeting Papers (150)

EDRS PRICE EDRS Price MF01/PC04 Plus Postage.

DESCRIPTORS *Bayesian Statistics; Cognitive Processes; Markov Processes;
*Mathematical Models; Monte Carlo Methods; Simulation;
Statistical Analysis

ABSTRACT

This paper aims to describe a Bayesian approach to modeling
and estimating cognitive models both in terms of statistical machinery and
actual instrument development. Such a method taps the knowledge of experts to
provide initial estimates for the probabilistic relationships among the
variables in a multivariate latent variable model and refines these estimates
using Markov Chain Monte Carlo procedures. This process is described in terms
of NetPASS, a complex simulation based assessment in the domain of computer
networking. The paper describes a parameterization of the relationships in
NetPASS via an ordered polytomous item response model and details the
updating of the model with observed data via Bayesian statistical procedures
ultimately being provided by Markov Chain Monte Carlo estimation. (Contains
12 tables, 9 figures, and 47 references.) (Author/SLD)

Reproductions supplied by EDRS are the best that can be made
from the original document



Specifying a Complex Measurement Model 1

Running head: Specifying a Complex Measurement Model

1

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL HAS

BEEN GRANTED BY

R. Levy

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

his document has beer reproduced as
received from the person or organization
originating it.

Minor changes have been made to
improve reproduction quality.

Points of view or opinions stated in this
document do not necessarily represent
official OERI position or policy.

Specifying and Refining a Complex Measurement Model

Roy Levy and Robert J. Mislevy

University of Maryland, College Park

[Paper presented at the annual meeting of the National Council On Measurement In
Education, Chicago, IL, April 2003]

Correspondence concerning the paper should be directed to the first author at:
1230 Benjamin Building
University of Maryland

College Park, MD 20742-1115
levyr@wam.umd.edu

2
'11TA2,7 COPY AVAEIABILIE



Specifying a Complex Measurement Model 2

Abstract

In this paper we aim to describe a Bayesian approach to modeling and estimating cognitive

models both in terms of statistical machinery and actual instrument development. Such a method

taps the knowledge of experts to provide initial estimates for the probabilistic relationships

among the variables in a multivariate latent variable model and refines these estimates using

Markov chain Monte Carlo procedures. This process is described in terms of NetPASS, a

complex simulation based assessment in the domain of computer networking. We describe a

parameterization of the relationships in NetPASS via an ordered polytomous item response

model, and detail the updating of the model with observed data via Bayesian statistical

procedures ultimately being provided by Markov chain Monte Carlo estimation.

Key words: Bayesian inference networks, Markov chain Monte Carlo, measurement model, complex assessment
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Specifying and Refining a Complex Measurement Model

Instruments in educational measurement have taken on a variety of forms ranging from

the more familiar e.g., multiple choice formats, to the unique, e.g., computer simulation of a real-

world application. Different formats yield different work products, e.g., a scan-tron sheet with

circles filled in, essays to be scored by raters, and portfolios. While methods for drawing

inferences from examinees' work products to their knowledge, skills, and abilities exist for the

more popular assessment instruments, new and innovative assessment instruments are often left

to develop inferential rules individually. Nonstandard and complex tasks result in complex work

products. Drawing proper inferences from these work products requires models that accumulate

and incorporate information in order to produce a score that is interpretable and valid for

inferences about students. It is these models that we investigate in this paper. More specifically,

we focus on a method of specifying and refining models that allow for updating beliefs and

reaching conclusions about examinees based on observable variables that are extracted from

multiple, complex work products.

Drawing from Schum (1987) we maintain that probability based reasoning can be applied

to all forms of inference, more specifically, to inference in educational measurement, and is

particularly useful for inferences from innovative and complex assessment instruments (Mislevy,

1994). In what follows we shall couch such probability based reasoning in a more general

assessment framework, describe such reasoning in detail, and illustrate these methods in practice

via an example from a complex assessment of the cognitive development of students in the Cisco

Networking Academy Program.

Specifically, the development of NetPASS, a measurement device to be utilized to assess

cognitive development of students in the third semester of Cisco Networking Academy
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Program's sequence of courses on computer networking, will be discussed. However, it should

be stressed that while the particulars of NetPASS will be described in detail, the process of

instrument and model development can be reinstantiated in settings that, on the surface, may

appear to have little in common with NetPASS.

Assessment Context

In what follows we summarize the application of the Evidence Centered Design

framework (Mislevy, Steinberg, & Almond, in press) to an assessment of computer networking

proficiency designed for Cisco Learning Institute's (CLI) Cisco Networking Academy Program

(CNAP).

CLI collaborates with high schools, community colleges, and vocational schools to

provide education on the fundamentals of computer networking. The CNAP is four-semester

curriculum teaching the principles and practice of designing, implementing, and maintaining

computer networks capable of supporting local, national, and global organizations. Instruction is

provided in classrooms as well as through online curriculum and activities; assessments are

likewise conducted through classroom exercises and online testing. The CNAP uses the World

Wide Web for both instruction and, more importantly for our purposes, assessment

administration and data maintenance. World Wide Web usage facilitates global access to

educational resources, with approximately 150,000 students in 60 countries participating in the

CNAP and an average of 10,000 administrations of online assessments per day. This high-

volume global access presents both opportunities and challenges for educational research.

Computer networking demands considerable technical knowledge as well as strategic and

procedural expertise to become accomplished at common networking tasks. Despite the

5
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importance of these domain abilities current web-administered assessments consist of multiple-

choice items primarily assessing declarative knowledge. As such, the then-current online

assessments were inadequate for determining student understanding of some of the most

important aspects of networking ability, namely those aspects involved in hands-on applications

of designing, installing, and maintaining networks. The absence of standardized assessment of

critical elements of ability force a reliance on local evaluation efforts, which may be prone to

substantial variability in curriculum emphasis and evaluation standards.

The limited scope of standardized assessment and the potential for substantial variability

in student capabilities in critical areas of computer networking ability is being addressed through

a redesign of the CNAP networking assessment program. Work in redesigning the networking

assessment program to more appropriately measure critical computer networking abilities

combines current simulation technology and remote connection capabilities to produce an online

assessment exercising the cognitive aspects of network design, implementation, and

troubleshooting. The initial outcome is a prototype assessment, called NetPASS, using network

simulations with realistic interactive tasks to measure students' abilities and provide targeted

educational feedback. This feedback includes reporting on the students' knowledge of

networking, their mastery of various networking skills, their ability to carry out procedures and

strategies for networking tasks, and their misconceptions about network functionality and

operational procedures. An Evidence Centered Design process (Mislevy, Steinberg, & Almond,

in press) was employed in this redesign, providing the framework necessary to meet the design

needs for such a complex computerized assessment in a technical domain.
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Assessment Framework: Evidence Centered Design

Technology exists such that assessments can incorporate sophisticated and intricate

simulations that require examinees to draw on relevant knowledge, skills, and abilities to solve

meaningful tasks. To qualify as an assessment, a simulation system must evoke, record, and

interpret observable evidence in a justifiable manner; this requires that the desired inferences

play a role in the development of the assessment at each stage. Ad hoc procedures such as

constructing an assessment, considering it, and then asking, "How do I score it?" or "How do I

interpret the results?" are insufficient.

Until recently, the grounding in sound design principles and corresponding methods for

developing, administering, scoring, and maintaining such innovative assessments was not

sufficiently developed to assure that resultant assessments would meet professional standards.

Evidence Centered Assessment Design (ECD; Mislevy, Steinberg, & Almond, in press)

leverages knowledge of cognition in the domain and sound design principles to provide a robust

framework for designing assessments, be they simple and familiar or complex and innovative.

The application of ECD to simple designs provides a re-usable assessment blueprint, which

facilitates developing assessments that meet professional measurement standards. For complex

and innovative measurement needs, such as the one considered in this work, the ECD framework

provides for assessment design that maintains an evidentiary focus, to guide the professional

through the complexities of innovative design. Even a coarse treatment of ECD is beyond the

scope of this paper. For more on ECD the reader is referred to Mislevy, Steinberg, and Almond

(in press); for a thorough explication of the application of ECD to the NetPASS assessment, the

reader is referred to Williamson et al., (2003). For our purposes, it will be sufficient to
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summarize several key aspects of ECD, namely those that most lend themselves to the

construction of an evidentiary argument.

The purpose of any assessment is to gain relevant information about the examinees; just

what information is relevant and how to obtain such information guides the development of an

assessment instrument. More technically, we define claims as specific statements about the

examinee's knowledge, skills, and abilities made on the basis of observable evidence from the

assessment. Once these claims of interest are established, they form the basis for the nature and

the extent of the required evidence; following Schum (1987), observable data only qualifies as

evidence when it is relevant to some claim.

Following the work of Messick (1994), we advocate a construct-centered approach

wherein the assessment is built from the foundation up by considering the construct(s) of

interest. Indeed:

A construct-centered approach [to assessment design] would begin by
asking what complex of knowledge, skills, or other attributes should be
assessed, presumably because they are tied to explicit or implicit
objectives of instruction or are otherwise valued by society. Next, what
behaviors or performances should reveal those constructs, and what tasks
or situations should elicit those behaviors? Thus the nature of the
construct guides the selection or construction of relevant tasks as well as
the rational development of construct-based scoring criteria and rubrics.
(pg. 17)

What claims would we like to make? Given these claims, what evidence is required to enable us

to make such claims? Given the evidence we want to collect, what tasks should we present to

examinees that will yield work products from which we can extract such evidence? To address

these questions, we rely on a Cognitive Task Analysis (CTA; Mislevy et al., 1999). A CTA is a

detailed approach to laying the foundation for evidentiary arguments regarding examinee
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proficiencies. In general, the CTA aims to identify knowledge, abilities, and strategies

examinees utilize to address tasks. A CTA may include investigating

essential features of tasks for eliciting behaviors

internal representations of the task situations

relationships between internal representations and the problem-solving behavior

processes used to solve problems

characteristics of the tasks that impact the problem-solving processes.

In performing the CTA specific to NetPASS, which grounds the assessment, the assessment

team of psychometricians and subject matter experts (SMEs) analyzed the performance of CNA

students at different levels of expertise under standard conditions across a range of tasks.

Ultimately, the goal of performing a CTA is to determine the answers to Messick's questions

posed above: (1) what are the knowledge, skills, and abilities required to solve problems? (2)

what behaviors manifest themselves at different levels of domain proficiency? and (3) what

features of tasks evoke those distinct behaviors? Corresponding to the three objectives in the

CTA, a Conceptual Assessment Framework (CAF) consists of three main models. In addition,

the CAF (see Figure 1) contains a fourth model; each is described below. For more on the CTA

and is importance to grounding and designing assessments, see Mislevy et al. (1999); for more

on the CTA performed in designing NetPASS see Williamson et al., (2003).

The Student Model

The Student Model addresses the question of what claims we would like to make; in

Messick's words "what complex of knowledge, skills, or other attributes should be assessed?"

The variables in the Student Model represent the knowledge, skills, abilities, or other relevant

9
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attributes that are of interest to those administering or gaining information from the assessment.

The Student Model can be in different states depending on the different values of the variables.

The state of the Student Model represents belief regarding an examinee's proficiencies. It is

based on these variables that we make decisions, evaluate, and/or plan future instruction.

Depending on the nature or purpose of the assessment, there may be few or many

variables of interest. For more general applications, such as a pass/fail decision, one Student

Model variable may suffice; for more focused applications, many Student Model variables may

be required, for instance in the case where feedback about student performance on many distinct

and differentiable aspects is preferred. When there are multiple Student Model variables, it is of

utmost importance to capture the relationships among them. One of the main purposes of this

paper is to examine several such relationships prominent in NetPASS from a probability-based

inferential standpoint, which will be discussed in detail below. A few more quite general points

about the Student Model and the variables therein are in order. First, the assessment design team

develops descriptions of the ways knowledge represented in the domain and of those features

that provide evidence about the relevant knowledge and skills possessed. Second, SMEs

knowledgeable about the ways students accumulate and demonstrate knowledge, skills, and

abilities can design assessment instruments in which multiple aspects of such knowledge, skills,

and abilities are required in predictable ways. Such assessments can be as simple as a two-stage

question in which the successful completion of the second part requires the successful

completion of the first part. The required relationships between aspects of knowledge, skills, and

abilities constitute evidentiary structures via which inferences can be made from observable to

Student Model variables. Finally, because we cannot observe the Student Model variables, we

10
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do not ever their values with certainty; we utilize probability based reasoning to estimate their

values and to estimate our uncertainty.

Evidence Models

Evidence Models address the question of what observable evidence is required to enable

us to make claims about non-observable constructs; in Messick's words "what behaviors or

performances should reveal those constructs [of interest]?" An Evidence Model defines how the

observable features of work products constitute evidence about Student Model variables. These

models consist of (1) the evaluation component containing rules of evidence in which features of

the work product are identified as observable variables that amount to evidence for inferences

about examinees, and (2) the statistical, or measurement model, which defines how these

observables should influence belief about values of the Student Model variables. The former

can take on many forms e.g., an answer key, a rubric, etc. The latter will be the focus of this

work. Thus as the major aim of this paper is the explication of and the relationships between

variables, be they Student Model variables or observable variables, the vast majority of what

follows will presume the first component of Evidence Models the rules for extracting evidence

from work products is already in place, and that what remains are observable variables that will

serve as evidence.

The measurement model contains deductive reasoning structures that facilitate the

estimates of likely values of observable variables (data) given the state of the Student Model and

also support the inductive reasoning from observed variables to probabilities of the states of the

Student Model variables (Mislevy, 1994). The probability model quantifies the relationship

11
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between evidence and a claim. This relationship is the backbone of the justification of an

assessment in terms of its validity and utility.

Task Models

Task Models address the question of what tasks we should present to examinees to yield

work products from which we can extract evidence; in Messick's words "what tasks or situations

should elicit those behaviors?" Task Models define the content and structure of tasks such that

examinees will respond to the tasks with work products from which evidence can be extracted.

Specific elements of Task Models include (1) performance situations, (2) material presented to

the examinee, and (3) student work produced in responding to the task. While it is possible for

an assessment to employ only one Task Model, most assessment use many Task Models.

Regardless of the number Task Models, we can think of them as templates to construct or

generate tasks. For instance, an assessment with 10 multiple choice items and 10 free response

items might have just two Task Models, one for each format. Tasks that share the same Task

Model share similarities in task requirements and the student work produced in response.

Summary

In an existing assessment, Task Models serve as templates for the various types of tasks.

The Assembly Model defines the strategy or in some cases the algorithm used to select and

present tasks to an examinee. The Evidence Model employs the evaluation component to extract

the relevant features of the work products produced in response to the task that will count as

observables. The Evidence Model then takes those observables and enters them into the

measurement model. Beliefs about Student Model variables are then updated by propagating the

12
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evidence throughout the Student Model. The state of the Student Model the current

probabilities of the values of the Student Model variables represents our belief about the

examinee.

The main focus of this paper is to describe in detail the construction and refinement of the

measurement model, the mechanism through which observable evidence affects our beliefs about

the knowledge, skills, and abilities of examinees. We now turn to a more complete elaboration

of the Student Model and the Evidence Model, with an eye toward the NetPASS application. To

that end we begin with a brief description of Bayes' Theorem, followed by the extension to a

Bayesian Inference Network, which will then in turn be used to represent the Student Model and

the Evidence Models.

Bayes' Theorem

To develop the inferential machinery to be employed, we begin by introducing several

probabilistic relationships. It is well known that the joint probability of two events is equal to the

product of the probability of one event occurring and the probability of the second event

occurring, given that the first event occurred :

p(x, )1 = p(y)x p(x I y) (1)

where P(X, Y) is the joint probability of event X and event Y occurring, P(Y) is the probability

of event Y occurring, and P(X I Y) is the (conditional) probability of event X occurring given that

event Y occurred. Let us now impose some structure on the variables. Let X be a variable whose

probability distribution P(X I Y)depends on some variable Y. Let P(Y) be the probability

distribution for Y, prior to observing X; this distribution represents our belief about the value of Y

Note that the terminology 'second event' does not necessarily refer to a temporal order among events

13
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before observing X and is known as the prior distribution for Y. Once X, some datum, is

observed, Bayes' Theorem implies that the updated distribution of Y is:

P(Y
X). P(Y)x P(X IY)

I P(X)
(2)

where P(X) acts as a normalizing constant whose analytical derivation or approximation is often

problematic or computationally intractable. Removing P(X) from the denominator on the right

side of eq. (2) renders the two sides unequal but proportional:

P(Y I X) a P(Y)x P(X I y) . (3)

That is, the posterior distribution of Y, conditional on the observed value of X, is proportional to

the product of (1) the prior distribution of Y and (2) the conditional distribution of X given Y,

P(X I Y), also known as the likelihood of Y. Again, if probability distributions are expressions

of our beliefs, the change in our beliefs about Y from the time before X is observed to the time

after Xis observed is a function of this likelihood expression. These likelihoods the relative

probabilities of the observed value (of X) given the possible states (of Y) that may have produced

the observed value allow for the deductive reasoning about the possible values of X, given the

value of Y. And as just shown, these likelihoods also allow, via Bayes' Theorem, for inductive

reasoning about the possible values of Y, once some datum, X, is observed (Jensen, 1996;

Mislevy, 1994).

When the number of variables in a problem increases, the application of Bayes' Theorem

in its form given in eq. (3) becomes computationally intractable. However, more efficient

techniques to represent variables and apply Bayes' Theorem across a large system of variables

have been developed in the form of Bayesian Inference Networks. We put forth a less technical

discussion of Bayesian Inference Networks and focus on their application to NetPASS. For a
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more technical discussion of Bayesian Inference Networks see Jensen (1996; 2001) and

Spiegelhalter et al., (1993); for the original proofs of the computational algorithms underlying

them, see Lauritzen and Spiegelhalter (1988).

Bayesian Inference Networks

In the context of the CAF, a Bayesian Inference Network (BIN) (Jensen, 1996; 2001)

serves as the statistical model for updating Student Model variables (see Martin & VanLehn,

1995 and Mislevy, 1994 on the use of BINs in assessment). BINs support probability-based

reasoning as a means of transmitting complex observational evidence throughout a network of

interrelated variables. As such, a BIN provides the means for deductive reasoning (from

generals, such as knowledge, to particulars, such as observable behaviors) and inductive

reasoning (from particulars to generals) required for producing appropriate inferences from

complex observations (Schum, 1987). The relationships of variables in a BIN constitute the

reasoning structures of the network. As in the preceding discussion of Bayes' Theorem, the

likelihoods within the network that define the deductive reasoning structureslikely values of

data given states of the student modelsupport subsequent inductive reasoning from the

observed data to probabilities of the states of student model variables (Mislevy, 1994).

A BIN is a graphical model (of which Figure 2 is an example) of a joint probability

distribution over a set of random variables, and consists of the following elements (Jensen,

1996):

A set of variables (represented by ellipses and referred to as nodes) with a set of

directed edges (represented by arrows) between nodes indicating the statistical

dependence between variables. Nodes at the source of a directed edge are

15
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referred to as "parents" of nodes at the destination of the directed edge, their

"children." In Figure 2, for example, Design is a child of Network Proficiency

while both Network Disciplinary Knowledge and Network Modeling are parents of

Network Proficiency. Similarly, Network Disciplinary Knowledge is an ancestor

of Design, while Design is a descendent of Network Disciplinary Knowledge.

The absence of an edge between two variables indicates a conditional

independence between them, given variables on the path(s) between them. For

example, the variables Design and Network Disciplinary Knowledge are

independent if the value of Network Proficiency is known. For a more general

discussion of this concept, D-separation, see Jensen (1996; 2001).

For discrete variables, each has a set of exhaustive and mutually exclusive states.

For continuous variables, the distribution of variable values is defined by a

probability distribution.

The variables and the directed edges together form what is commonly referred to

as a directed acyclic graph (DAG; Brooks, 1998; Edwards, 1998; Jensen, 1996;

Pearl, 1988). These graphs are directed in that the edges follow a 'flow' of

dependence in a single direction (i.e., the arrows are always unidirectional rather

than bi-directional). The graphs are acyclic in that following the directional flow

of directed edges from any node it is impossible to return to the node of origin.

For each endogenous variable, there is an associated set of conditional probability

distributions corresponding to each possible pattern of values of the parents.

These distributions are graphically represented squares; the connections between

variables are routed through these relationships.

16
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For each exogenous variable, an unconditional probability table or distribution

must be specified; in Figure 2, Network Disciplinary Knowledge has no parents,

hence, a distribution for its values must be specified. This distribution is also

represented graphically with a square; note that there are no directed edges

flowing into the square.

As described below, both the Student Model and the Evidence Models can be conceived of as

BINs. Before turning to the probability framework used to represent these models, let us pursue

further into the potential characteristics of the manner in which variables may relate to one

another.

Relationships Among Variables

This section sketches out a variety of evidentiary structures among the Student Model

and observable variables. Four general relationships are defined, followed by more specific

relationships. Though certainly not an exhaustive set of all possible structures, these structures

appear repeatedly in the NetPASS assessment, and so the structures will first be described and

later illustrated by examples from NetPASS.

General Relationships

Here we introduce very general concepts that will be used in the explication of more

specific relationships in NetPASS.

Independence relationships: Two variables are independent of one another when

the level of one variable does not affect the other variable; that is, the

(conditional) distribution of one variable conditional on the other remains

17
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constant at all levels. In BINs, updating the probabilities for the values of one

variable causes no change in the probabilities for the levels of the other variable,

though such a change may impact the probabilities for the levels of variables that

are descendants of both.

Dependence relationships: Two variables are dependent if the level of one

variable affects the other variable; that is, conditional distributions of one variable

at levels of the other variable vary from level to level. In BINs, updating the

probabilities for the values of one variable causes changes in the probabilities for

the levels of the other variable. We further define direct dependence as the case

where a relationship is conceived of between two variables directly, as opposed to

via a third variable.

Conditional independence relationships: Two variables are dependent though their

dependence is explained by a third variable; that is, keeping the third variable

constant, the variables are independent. More formally, if B is conditionally

independent of C (given A),

POI A) = P(B I A, C) (4)

Conditional dependence relationships: Two variables are dependent above and

beyond that which can be explained by a third variable; that is, even at constant

levels of the third variable, the two variables are related. Negotiating conditional

dependence, i.e., achieving conditional independence, plays a key role in

constructing BINs, particularly for assessment purposes.

18
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Bivariate Relationships in Modeling Skills Involved in an Assessment

Let bivariate relationships be those between two variables; in the framework of BINs, this

corresponds to the case of modeling a variable as a child of a single parent. Two bivariate

relationships appearing in NetPASS are presented below in the context of relating cognitive

skills.

Direct Dependence: There is an expected relation between two skills where the

value of one dictates the expectation of the other in the form of a probability

distribution.

Ceiling: There is an expected relation between two skills where the value of one

not only dictates the expectation of the other, but sets a maximum value that the

other one can take. One instance of a ceiling is where the ceiling is set to be the

value of the first skill. That is, define an expected distribution for B based on the

value of A such that B cannot exceed A.

Multivariate Relationships in Modeling Performance on an Assessment

Multivariate relationships are those involving at least three variables; in the framework of

BINs, this corresponds to the case of modeling a variable as a child of multiple parents. Most of

the multivariate relationships discussed here can be properly thought of as generalizations of the

bivariate relationships discussed above. To illustrate the applicability of various relationships to

different aspects of assessment we present the multivariate relationships in the context of

modeling performance; that is, performance is modeled as a child of multiple cognitive skills and

abilities.

19



Specifying a Complex Measurement Model 19

Conjunctions: A generalization of the ceiling relationship. Multiple skills impact

performance such that the minimum value of the skills defines the ceiling for

performance; the absence of any of these required skills causes expectation of

lower levels of performance. Conjunctions correspond to the logical term 'and,'

indicating that the joint occurrence or instantiation is required.

Compensatory Relationships: A generalization of the direct dependence

relationship. Multiple skills impact performance such that the increase in any of

these skills (not just the lowest, as in conjunctions) causes expectation of an

increase in performance.

Conditional dependence relationships: Multiple skills affect performance.

Conditional dependence relationships occur among observable variables,

indicating that the observable variables are related in ways above and beyond

those determined by their parent skills. The consequences of ignoring these

relationships can be deleterious in estimating the values of variables and the

precision of the estimates (Mislevy & Patz, 1995; Patz, Junker, & Johnson, 2000).

It should be noted that these basic structures represent just a small portion of the limitless

number of ways to model relationships. For other common structures, see Mislevy, Senturk, et

al. (in press). Again, though estimates of these relationships can come from data, familiarity and

understanding of the knowledge, skills, and abilities of the domain of interest can contribute both

to defining their form and values.

n0
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The Probability Framework

Gelman et al. (1995, p. 3) define the first step in conducting a Bayesian analysis as

setting up a full probability model, specifically, a joint distribution of all quantities, observable

and unobservable. Furthermore they note "the model should be consistent with knowledge about

the underlying scientific problem and the data collection process." In assessment, this

"knowledge" is knowledge about the domain of interest, specifying the (1) targeted knowledge,

skills and abilities, (2) ways in which such knowledge, skills, and abilities are manifestly

demonstrated in performance, and (3) characteristics of situations that provide the opportunity to

observe such performance. As discussed above, the Student Model, Evidence Models, and Task

Models provide this very knowledge.

The Probability Model

The Student Model contains unobservable variables characterizing examinee proficiency

on the knowledge, skills, and abilities of interest. For the ith examinee, let

0, = (0,..., ) (5)

be the vector of P Student Model variables. The complete Student Model for all examinees is

denoted 0.

Task Models define those characteristics of a task that need to be specified. Such

characteristics are expressed by Task Model variables; for task j, these variables are denoted by

the vector

Yj = (17j1)'117j1.) (6)

where L is the number of Task Model variables. The full collection of Task Model variables is

denoted Y .
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The evaluation component of Evidence Models defines how to extract relevant features

from an examinee's response to a task (work products) to yield the values of observable

variables. Let

X = Xim ) (7)

be the vector of Mpotentially observable variables for task j. X;,, is then the value of

observable m from the administration of task j to examinee i. The complete collection of values

of observable variables, that is, the values for all observables from all tasks for all examinees is

denoted as X . As the focus of this paper is not on the generation of tasks from Task Models,

nor is it the extracting of observables from work products via the evaluation component of

Evidence Models, let us assume these important procedures have been completed, leaving us

with a set of observables.

The BIN for the Student Model is a probability distribution for 0; . An assumption of

exchangeability results in a common prior distribution, i.e., before any responses to tasks are

observed the Student Model is in the same state for all examinees. Beliefs about the expected

values and associations among the Student Model variables are expressed through the structure

of the model and higher level hyperparameters . Thus, for all examinees,

0; P(0; I ) (8)

The higher level parameters, , define the prior expectations. In the absence of a strong theory

regarding the prior distribution of examinee proficiencies, as is the case with NetPASS, these

parameters should be set such that P(0, I k) is vague.

For any given examinee, the statistical model defines how the observable variables, X,,i ,

are dependent on that examinee's values of the Student Model variables, 0, . Let 7,flik be the
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probability or responding to observable m from task j with a value of k. The collection of these,

for any particular observable, is then

= (7rmj',1rmJ2,...,2rmjK) (9)

where K is the number of different values observable m from task] may take on. 5-mi is then the

probability structure associated with observable m from task], i.e., the conditional probability of

Ximi given 01. More formally, if

mj k = 19( Ximj = X imjk I i )5

the distribution of the values for observable m from task] for examinee i is then

X p (x I e gm; )

(10)

In short, for any examinee, the distribution for the observables is defined by the values of the

Student Model variables and the conditional distributions of observables given Student Model

variables. Thus if we knew both the values of the Student Model variables and the conditional

distribution of observables given Student Model variables, we would know the distribution of the

observables. Of course in practice, the situation with the Student Model variables and the

observables is reversed: we have values for the observables but not the Student Model variables;

hence the use of Bayes' Theorem to reason from observations to Student Model variables.

When there are a large number of levels of Student Model variables and/or of the

observable, there are a very large number of fr,jk 's. It may be the case that further structure

exists for modeling the gm., 's. More formally, we may express this as

7 I P(ffmj I 1 ny)

where umi are higher level hyperparameters for observable m (e.g., characteristics of the

(12)

appropriate Evidence Model and the task] from which m is obtained); prior beliefs about such
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parameters are expressed through higher-level distributions, P(77,ni ). The complete set of

conditional probability distributions for all Evidence Models for all observables is denoted 7r ;

the complete set of prior probabilities for those distributions is denoted II.

The joint probability of all parameters can be expressed as

P(1 0, r ,X). P(X)xP(Ti I 1.)x p(o n)x p(n I x,n,o)x p(x I 1,, it 1,7r) (13)

This expression can be simplified in light of additional knowledge and assumptions we bring to

the assessment context.

Simplification of the Probability Model

Eq. (11) states that the distribution of an examinee's response, Ximi , is defined by 0; and

. As such, the set of examinee responses, X , are conditionally independent given 0 and 7r .

The distribution of the responses in not contingent on the other parameters in the model, and

rl . The fifth term on the right side of eq. (13) therefore simplifies to

P(X I 1,, o,n). p(x o,n) (14)

Taking advantage of the other conditional independence relationships described above and

rearranging terms, the full joint distribution can be parsimoniously represented as:

P(X,11, 0, r ,X). P(X)xP(011.)xPO-OxP(ITITI)xP(XIO,n) (15)

Intuitively, the (the last term on the) right side of this equation states that the probability

distribution of the observable is defined by the Student Model variables and the conditional

distribution for that observable. The Student Model variables are distributed conditionally on

higher-level parameters (the second term), which have their own distribution (the first term).

The conditional probability distributions are distributed conditionally on higher-level parameters
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(the fourth term), which have their own distribution (the third term). In setting up the full model,

our goal then becomes to define the various terms in eq. (15). We have already mentioned that

we might properly think of observable variables as conditional on latent Student Model

variables. In a complex assessment, such as NetPASS, which includes multiple Student Model

variables that are related, there becomes the need to model the dependencies among the Student

Model variables. We therefore extend the notion of modeling observables as conditional on

Student Model variables to modeling the Student Model variables as conditional on other

Student Model variables. Much of the discussion regarding modeling obverables conditional on

Student Model variables via the Jtmj terms can be extended to modeling Student Model variables

as conditional on others via their own conditional probability distributions. Before turning to the

specification of the Student Model, we introduce a more efficient manner for modeling

conditional dependencies.

Samejima's Graded Response Model

One procedure for modeling the conditional probabilities of a variable given its parent is

by directly estimating the probabilities themselves (Spiegelhalter et al., 1993). This procedure

quickly becomes unwieldy as the number of levels of the parent(s) or child increases. We

therefore seek a more efficient way to model the conditional probabilities. To that end, we turn

toward item response theory (IRT) for parsimonious ways of modeling conditional probabilities.

The Graded Response Model

Typical models for modeling variables as conditional on other variables are IRT models,

the most common of which are unidimensional models for binary responses (Hambleton and
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Swaminathan, 1985). The two-parameter logistic unidimensional model for binary (0/1)

responses is

logit(P(Xii =1 I 0 i)) = aj(0,bj) (16)

where aj and b1 are the scale and location parameters, respectively, that define itemj.2

Samejima's Graded Response Model (GRM; 1969) extends this to the more general case where

the outcome variable X is not restricted to be binary, but instead is polytomous, though still

ordinal. That is, the observable, X can take on any integral value from 1 to K. Define the

probability that the response is in category k or above as

P(X ?..k)= logif (a (I 9 b jk)) (17)

for k=2,...,K and bfk is the location parameter associated with separating the kth from the k-1 tit

category. Note that

P(X =1, (18)

for the probability of response being in the lowest category or above is 1, and

P(X > K +1)=0 , (19)

for the probability of response being above the highest category is 0. The probability of response

being in a category alone (and not in that category or above) may be calculated by subtracting

different instantiations of eq. (17). More technically, the probability of response being in

category k is

P(X = k) = P(X P(X +1) (20)

2 Eq. (16), and much of the subsequent discussion of IRT models, follows customary presentations of IRT and
indexes responses in terms of examinees (i), items (j), and (where relevant) categories (k). In terms of the language
of ECD and the notation used above, we can think of items as being different tasks where there is only one
observable extracted from the task.
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Let us illustrate this and return to the issue of location parameters and response categories

by way of an example. Consider the case where there are 3 response categories. There are K 1

= 2 location parameters. The first location parameter marks the location of the separation

between response category 1 and response category 2; the second location parameter marks the

location of the separation between response category 2 and response category 3. To continue the

illustration, let us fix these location parameters at 2 and +2 and fix the scale parameter to +1.

Since the value of eq. (17) for k=1 is 1 (eq. (18)), let us instantiate eq. (17) for k=2,. . . ,K:

P(X 2) = logit-1 (1 x (0i (-2))) (21)

P(X 3) = logit'l (1 x (9; (+2))) (22)

Instantiate eq. (20) to obtain the probabilities for being in each response category.

P(X =1). P(X P(X ?. 2) =1 P(Xu 2) (23)

P(Xu = 2) = P(Xu 2) P(Xu 3) ; (24)

P(X = 3) = P(X 3) P(X 3 +1) = P(X 3) (25)

These probabilities of response are, ultimately, functions of theta. Figure 3 plots the

probabilities of each response for any value of theta obtained from a GRM with a =land

b = (-2, + 2) .

In such a case as been illustrated here, in order to model the 15-cell conditional

probability table of a child variable that has three levels conditional on a parent that has five

levels, we need only estimate three parameters, the discrimination ai and the two category

boundaries contained in b .
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Applications in NetPASS

Though the above illustration depicts a variable with three categories, the logic of this

model can be extended to fit observables with any number of categories. When the GRM is

employed to model observed responses in the Evidence Models, we will use a model with three

categories, as there are three possible values (Low, Medium, High) for the observed variables.

Nothing in the GRM restricts its use to when one variable (i.e., the child variable) is observed.

Indeed, we employ the GRM to model latent variables as conditional on other latent variables in

the Student Model and in the Evidence Models. In these cases, we will use a model with five

categories, as latent variables can take on any of five possible values (novice, semester 1,

semester 2, semester 3, semester 4). The only change from the preceding discussion is that the

child variable can take on values from 1 to 5 (rather than 1, 2, or 3) and that there needs to be 4

(rather than 2) location parameters (to partition the continuum into 5 rather than 3 levels).

Though the presentation of the GRM in the preceding section has been couched in terms of

observed responses (to items), it may more generally be said to model conditional probabilities,

where the conditional probabilities of an observed response is just one special case. In the case

where the child variable is latent, we might call the conditional probabilities defined in the

expressions above "probabilities of an examinee having a certain value for the child variable"

rather than "probabilities of an examinee giving a certain response to the item." For another

example of using an ordered polytomous IRT model to model latent variables, see Patz, Junker,

& Johnson (2000).

In all the instances in NetPASS, we will assume the category boundaries are equally

spaced apart. In this case, we need not estimate K-1 category boundaries, but just one location
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parameter creating an even more parsimonious representation. Future work may include

releasing this additional constraint to allow for unequally spaced category boundaries.

The Effective Theta Method

The GRM, like most IRT models, is unidimensional: there is one variable, 0, , that serves

as the parent for the observables. Complex assessments such as NetPASS involve many

variables and, more importantly, conceptualize observables as being dependent on more than one

variable. Thus, we must either implement a multivariate IRT (e.g. Reckase, 1985; Sympson,

1978) model or distill down the relationships between multiple parents and children to fit the

unidimensional GRM. We proceed by adopting the latter strategy and take the following steps.

First, we adopt a set of parameters that will remain constant throughout, ami and bay . Next we

seek to combine the parent variables in such a manner to produce one variable that will serve in

the unidimensional GRM; this variable is an "effective theta" denoted as 6;'. In IRT models,

the conditional probabilities of response are determined by theta and the "item" parameters any

and bmi
3. In fixing these parameters the conditional probabilities are then a function of the

effective theta, which itself is a function of the parent variables. Coefficients and intercepts in

the calculation of the effective theta are akin to scale and location parameters in usual IRT

formulations. In essence, this is simply a shift in the estimation. Typical IRT models posit an

examinee's latent trait(s) as being constant and estimate the items (in terms of amj and b )

accordingly. Instead, the effective theta method holds the scale constant (by fixing an,j and bmi ) ,

3 For ease of exposition, we will continue to discuss the effective theta method in terms of items (i.e., an observable
child variable). Like the GRM, the effective theta method is by no means restricted to case of observable child
variables.
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and estimates the examinee's latent trait(s) with respect to each item. The impact of the item,

both in terms of overall difficulty and association to examinee proficiencies, is part of the

calculation of the effective theta.

The effective theta method brings two distinct advantages (Mislevy, Senturk, et al., in

press). First, this may be more comforting to SMEs, who while familiar with the domain and the

structure of knowledge and able to provide the form of the relationships (e.g., "familiarity with

either procedure A or B is sufficient," or "once an examinee has skill A performance becomes

mainly a function of skill B", etc.) may not feel comfortable specifying a complete conditional

probability table. Second, unidimensional IRT models are quite popular in the psychometric

community and now the problem is on a scale familiar to experts in educational measurement.

Thus, they may feel more comfortable with capturing and modeling knowledge elicited from the

SMEs. For example, if experts believe that an item is easier than most or is very closely related

to proficiency, we have a solid idea about just what the values of the parameters should be. Of

course, these values are by no means fixed. Our approach is to elicit initial opinions from SMEs,

quantify them by assigning numerical priors, and then refine the values based on pretest data and

pilot testing.

Unidimensional Models

as

In the case where a variable, ec , has one parent, 01, define the conditional probabilities

k = P(0, = k I 93 (26)
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where, as before, k=1,...,K are the possible values of 02. We model the conditional

probabilities, Irk for k=1,...,K, via a projection, or mapping, function g(01) which we then enter

into the GRM. A note about each of the mapping function and the GRM is required.

As will be described below, the relationships between all of the variables in NetPASS are

positive. When constructing an effective theta from parent variables, the mapping function from

the parent variable(s) to the effective theta should therefore be monotonic and positive. Figure 3

offers a visual depiction of this concept. There is a positive monotonic relationship between

theta and the response category: as theta increases, the probabilities of higher levels of response

increase.

Assuming the levels of 01 are roughly equally spaced apart, we code the values of

0, accordingly and define the effective theta via a linear function, g(01), as the map:

60** .:--- g(191). c x60, +d (27)

Note the simplicity of the model: there are two parameters to estimate, c and d , regardless of

the number of states of the parent , 01, or the child, 0, . The effective theta can be thought of

intuitively as the combination of the parent variable 0, and the features of the conditional

distribution, represented by c and d .

We have specified the structure of P(0c I 01,n k) where the conditional probabilities, Irk ,

are defined by the parameters c and d . In IRT models a and b parameters define the conditional

probability distribution. Thus it should come as no surprise that the two sets of parameters are

related. The constant parameter, d , is akin to b in eq. (17) and is related to the average value for

the child variable. The slope parameter, c, is akin to a in eq. (17) and defines the strength of

association between 0, and 02. Higher values of the slope parameter indicate a stronger
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association between the parent and child. Higher values of the intercept parameter indicate that,

on average, the value of the child is higher.4 The slope and intercept parameters capture the

conditional distribution; estimation of the conditional probability distribution thus becomes the

estimation of these parameters.

Multidimensional Relationships

Consider the case where 0 = (191,...,60,); we must now build a mapping function, f, (0),

to project a vector of variables onto an effective theta. In this section we will describe general

categories of mapping functions for multidimensional.

Combinations of linear mapping functions. For each parameter Oi , l =1,...,L , first

define a (unidimensional) linear mapping function

9; a- g(601)= c, x(91)+ d, (28)

to specify the marginal influence of 9, on the value of child variable t. Then define a

function

9," --a, hi(9: . .. ,OtL ) (29)

that defines how the aspects of proficiency interact to define proficiency for this

particular outcome. This variable, 0," , is the effective theta to be entered into the

GRM. Compensatory relationships are of this form, examples of which will be

provided below.

Linear mapping functions of combinations. First define a function

' This marks a departure from more common formulations of IRT models where higher values of the intercept term
indicate lower probabilities of the child taking on higher values; e.g., in more common binary IRT models
(Hambleton and Swaminathan, 1985), higher b values indicate a more difficult item, with lower probabilities of
correct response. The notation used here is consistent with that of Bock's (1972) slope-intercept form.
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(30)

of the L Student Model variables that describes the form of their interaction, e.g., a

ceiling. Next define a linear mapping function

9," u,(0,*). c, x0 d, (31)

that adjusts for the sensitivity of the observable to the proficiency (via the slope) and

average difficulty (via the intercept). Again, 0," is the effective theta to be entered

into the GRM. Conjunctive relationships are of this form, examples of which will be

provided below. Again, only two parameters are required for these cases.

Everything else. Many other structures and procedures for mapping a

multidimensional space to a unidimensional effective theta can be constructed.

Examples discussed will be restricted to those relationships that appear in NetPASS. The reader

interested in the quantification procedures for a number of other relationships is referred to

Mislevy, Senturk, et al. (in press).

The Application of the Effective Theta Method to the GRM

The effective theta method fixes the parameters a, and b in the GRM and models an

effective theta as a function of the examinee proficiency variables and parameters (the slopes and

intercept) that define the conditional distribution. When using the effective theta method and the

GRM to model observed responses, a =land b = (-2, + 2) . When using the effective theta

method and the GRM to model values of latent variables, a =land b = (-3, 1, +1, + 3) . The

conditional distributions are captured in the coefficients and intercepts of the equation for the

effective theta. The accurate modeling of the relationships in the Student Model and the

Evidence Models and the estimation of these parameters constitute the calibration of the
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NetPASS assessment. When the specific relationships in NetPASS are presented in the

following sections, they will be illustrated with specific values for these parameters.

The Student Model

Properties of Student Model Variables

The Student Model, on the whole, aims to represent the knowledge, skills, and abilities

that are important for success at CNAP. Figure 2 shows part of the NetPASS Student Model

including all Student Model variables that are the target of inference in the assessment. The

complete Student Model also includes the specification of statistical relationships among

variables and other variables to facilitate statistical modeling, which will be addressed below.

All the variables described in this section are considered to be discrete, and can take on

any of five values, couched in terms of CNAP's four semester courses: complete novice,

semester 1, semester 2, semester 3, and semester 4, where the level indicates one's cognitive

level on that particular aspect of the domain.

Quantitative Modeling of Relationships in the Student Model

In terms of the joint probability distribution (eq. (15)), the quantitative modeling of the

relationships in the Student Model amounts to the specification of P(0 I 1.). Several relationships

will be discussed, each followed by examples as they appear in NetPASS

Direct Dependence

With direct dependence, the value of the child is dependent on only one parent, which

determines a probability distribution for the child.
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Basic formulas.

Define the effective theta as a linear function of the lone parent variable:

ce x + de (32)

where 0: is the effective theta to be used for the distribution of the child, and A is the parent

variable

Examples from NetPASS.

Discussions with SMEs revealed that the relationships between Design and Network

Proficiency, Implement and Network Proficiency, and Troubleshoot and Network Proficiency

may be modeled as direct dependence relationships. To obtain the effective theta for Design,

instantiate eq. (32):

Csign C Design X NetworkProficiency dDesign
(33)

Effective thetas calculated for all possible values of Network Proficiency with C = 2 and

d Dessgn= -5.8 and are given in Table 1. The values for cDesv, and dpesign were chosen because

when the resulting effective thetas are entered into the GRM to produce a conditional probability

distribution (Table 1), the resulting distribution approximately matched the opinions and

expectations of SMEs. We will eventually estimate the value of C and dpesign ; because

values of 2 and 5.8, respectively, result in the conditional distribution experts expect, our prior

distributions for each parameter will be based on these values.

To obtain the effective theta for Implement, again instantiate eq. (32):

(34)0Implement C Implement X e NetworkProficiency d Implement
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Effective thetas calculated for all possible values of Network Proficiency with chnpiemen, = 2 and

d Implement = -6.2 and are given in Table 2. The values for cimplement and dImplement were chosen

because when the resulting effective thetas are entered into the GRM to produce a conditional

probability distribution (Table 2), the resulting distribution approximately matched the opinions

and expectations of SMEs; again, these values for chpie., and dimplemen, represent expert

expectations and will serve as the basis for the prior distributions in the calibration.

Likewise, the effective theta for Troubleshoot is defined as:

e Troubleshoot = CTroubleshoot X e NetworkProficiency + dTroubleshoot
(35)

Effective thetas calculated for all possible values of Network Proficiency with C Troubleshoot = 2 and

dTroubleshoot
= -7.0 and are given in Table 3, as is the resulting conditional probability distribution.

As before, these values for C Troubleshoot and dTroubleshoot represent expert expectations and will serve

as the basis for the prior distributions in the calibration.

To illustrate how these prior estimates mimic expert expectations, compare the values in

Table 3 to the values in Tables 1 and 2; for all values of Network Proficiency, the effective theta

for Troubleshoot is always lower than the effective theta for Implement which is always lower

than the effective theta for Design. As a result, for all values of Network Proficiency, the

probability of high levels is lower for Troubleshoot than for Implement, which is lower than for

Design. This reflects SME expectation that Design is the easiest aspect of Network Proficiency

to master, followed by Implement, followed by Troubleshoots Though our expectation is that

the level of Design will be higher than the level of Implement, which will be higher than the level

5 The expected difference in the ability to acquire the cognitive skills of Design, Implement, and Troubleshoot is
entirely captured by the change in the expected intercept parameter, as the coefficient used in compiling Tables 1-3
is unchanged.
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of Troubleshoot the model is not constrained so that this will always be true. There are no

mathematical constraints to force Design to be higher than Implement and Implement to be

higher than Troubleshoot. Indeed, should empirical evidence indicate otherwise, it is possible

for this property of the conditional distributions to change.

Ceiling Relationships

Ceiling relationships are not unlike direct dependence relationships: in both cases, one

parent determines the probability distribution for the child variable. The parent variable, or some

transformation of it, sets the ceiling value for the child, which can take on any value at or below

the ceiling.

Basic formulas.

The quantification of ceiling relationships is quite similar to that of direct dependence

relationships. Define the effective theta as a linear function of the lone parent variable:

19:* a cc x 9i + dc (36)

This effective theta is then entered into the GRM to produce a probability distribution for the

values of the child. These values do not represent the correct probability distribution of the

child, for the GRM allows for the child to take on values higher than the ceiling. We thus

impose the ceiling structure and adjust the probability distribution accordingly by setting the

probabilities for levels above the ceiling to 0 and renormalizing the remaining probabilities.
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Examples from NetPASS.

Discussions with SMEs revealed that Network Modeling cannot be higher than Network

Disciplinary Knowledge. To obtain the effective theta for Network Modeling, instantiate eq.

(36):

0 XNeworkModeling C NetworkModeling NetworkDisciplinaryKnowledge + dNetworkModeling (37)

Table 4 contains the possible values for Network Disciplinary Knowledge, the values for the

effective theta obtained with CNetworkModeling = 2 and d NetworkModeling = 8.0, and the probabilities that

result from the GRM. This distribution does not reflect the ceiling structure hypothesized by the

SMEs. This structure is imposed on the distribution by forcing probabilities for levels of

Network Modeling above the level of Network Disciplinary Knowledge to 0 and renormalizing

such that the conditional distributions, i.e., the rows in the table, sum to 1. These corrected

probabilities are given in Table 5. Again, the values of the parameters in the model were

selected to mimic expert expectation and will serve as the basis for the prior distribution for

incNetworkbfodeling and d NetworkModeling the calibration of the model.

Baseline-Ceiling Relationships

Define a relationship that involves two parents: one parent sets a baseline value and the

other serves in a compensatory relationship with the first parent to define the effective theta. In

addition, the first parent variable imposes a ceiling relationship on the resulting probabilities.

The procedures for defining baseline relationships and implementing ceiling relationships have

already been presented. A more complete explanation of compensatory relationships is deferred

until later; it should be sufficient for our purposes now to say that compensatory in this context

refers to an additive model.
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Example in NetPASS.

Network Disciplinary Knowledge and Network Modeling serve as parents for Network

Proficiency (Figure 2). Discussions with SMEs revealed that Network Proficiency cannot be

higher than Network Disciplinary Knowledge and that Network Proficiency is expected to be

higher then Network Modeling, though it is possible for the latter to be higher than the former.

Furthermore, Network Disciplinary Knowledge is the primary contributing factor to Network

Proficiency and that Network Modeling is a secondary factor; with Network Disciplinary

Knowledge essentially serving as a prerequisite, Network Modeling serves as an additional

compensatory variable. Therefore, a baseline based on Network Disciplinary Knowledge is used

and then adjusted based on the value of Network Modeling.

Define the baseline theta as a linear transformation of Network Disciplinary Knowledge

as

0NetworkProficiency C baseline X 9NenvorkDisciplinaryKnowledge dbaseline (38)

where 0NeiworwisciplinaryKnowledge is the value of Network Disciplinary Knowledge. Define the

effective theta as

0NetworkProficiency E 0NetworkProficiency C compensatory[° NetworkModeling (19NetworkDisciplinatyKnowledge (39)

where in addition to those variables in eq. (38), 9Networkhfodeling is the value of Network Modeling.

Consider the term in the brackets. Network Modeling can never be higher than Network

Disciplinary Knowledge, thus the term in the brackets represents how much Network Modeling

contributes above Network Disciplinary Knowledge. When Network Modeling is one level

below Network Disciplinary Knowledge (as it is expected to be, as shown in Table 5), the

contribution is 0. When Network Modeling is equal to Network Disciplinary Knowledge, the
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contribution is equal to the value of Ccompensatory When Network Modeling is two or more levels

below Network Disciplinary Knowledge, the contribution is negative. The possible combinations

of Network Disciplinary Knowledge and Network Modeling and the resulting effective thetas

with cbase,,e 2, d baseline = -6.0, and compensatory 1 are given in Table 6. The effective theta

obtained from eq. (39) is then entered into the GRM to obtain the conditional probability

distribution for Network Proficiency, also given in Table 6. As with the previous ceiling

relationship, the GRM does not retain the ceiling structure; the ceiling is imposed by setting all

probabilities for levels of the child greater than the level of Network Disciplinary Knowledge to 0

and renormalizing the probabilities. The corrected probability distributions are given in Table 7.

Again, the values of C baseline dbaseline , and ccompensatory used here reflects expert opinions regarding

the conditional probability distribution and will serve as the basis for the prior distributions.

Exogenous Variable

In specifying the distributions for Network Modeling, Network Proficiency, Design,

Implement, and Troubleshoot, each of these variables was modeled as conditional on some other

parent variable(s). To complete the specification of the Student Model, the lone exogenous

variable, Network Disciplinary Knowledge, must also be specified. As NetPASS is intended to

for the assessment of third semester students in the CNAP sequence, experts posited that the

majority of examinees would be on the level of third semester students. Slightly fewer would be

on the level of second semester students. Since it is possible for examinees to be ahead of pace,

there might be some that are operating on the level of fourth semester students; conversely, it is

also possible that students might be quite behind, it is even possible that some might be operating

at the level of a first semester student or even that of a complete novice. Using an effective theta

40



Specifying a Complex Measurement Model 40

value of .6 results in an appropriate distribution, which is given in Table 8. Since this variable is

not posited to be conditional on any other in the model, it was modeled using a Dirichlet

distribution in the manner described by Spiegelhalter et al. (1993). To model a variable in this

way, a vector, e, is defined with pseudocounts of examinees. For example, with e containing the

values .1477, .8498, 3.5042, 4.0798, and 1.4185, define Network Disciplinary Knowledge to be

distributed as a Dirichlet distribution with parameters contained in e. In essence, the values in e

serve as pseudocounts of examinees; the distribution for Network Disciplinary Knowledge is one

that would be empirically obtained if we observed examinees in the relative frequencies defined

in Table 8. Since we desire to have vague prior distributions, we define the pseudocounts

accordingly. Operationally, this is accomplished by setting the values in e sum to 10. Thus, we

have modeled the prior distribution for Network Disciplinary Knowledge as if we observed the

relative frequencies in Table 8 but on a sample of size 10 (Spiegelhalter et al., 1993).

Summary

In the preceding sections section we have quantitatively specified the variables in the

Student Model. In terms of the joint probability distribution in eq. (15), we have specified most

of the P(0 I a,) and hinted at the P(k) terms.6 P(0 I I.) refers to the distribution of the Student

Model variables, while POO refers to the distribution of the parameters that define the

distribution of the Student Model variables. In terms of the effective theta method, 0 are the

Student Model variables themselves and 1. consist of :

The various c, and d parameters used to define the distributions of Network

Modeling, Network Proficiency, Design, Implement, and Troubleshoot

6 When we further elaborate on the Evidence Models, we will see that there will be several more variables that might

be thought of as being components of the P(0 I k) and the P(k) .
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e parameters used to define the distribution of Network Disciplinary Knowledge

In order to enact a fully Bayesian model, distributions the various c and d parameters will need to

be specified. This discussion is deferred until after the description of the modeling of the

relationships in the Evidence Models.

Evidence Models

Qualitative Description of the Evidence Models

Evidence Models consist of two components, the first being the evaluation component

that defines how features of the work product will amount to observables to be used as evidence

for inferences about examinees. As the main purpose of this paper is to examine how variables,

be they latent or observable, relate to each other the discussion of Evidence Models will presume

the evaluation component has been adequately defined and will consist of a discussion of the

second component, the statistical model. The statistical model defines how observables should

influence belief about the Student Model variables. Thus at one end of the chain there are

Student Model variables, on which we would like the assessment to inform us, and at the other

end of the chain there are observable variables, the data extracted from the work products. The

statistical model defines how the observable data relates to and informs on the Student Model

variables. It is the middle link in the chain, serving to take observable data and make it evidence

in support of a claim about the Student Model variables.

In NetPASS, there are three distinct types of Evidence Models, each corresponding to a

different aspect of Network Proficiency: Design, Implement, and Troubleshoot. A pictorial

representation of part of a Design Evidence Model is given in Figure 4. The Network

Disciplinary Knowledge and Design variables are those defined in the Student Model; definitions

42



Specifying a Complex Measurement Model 42

of the others follow. DK and DesignE represents the combination of the two Student Model

variables involved in this Evidence Model. DK and DesignE is not itself of inferential interest; it

serves to link the Student Model variables to the observable; such an "instrumental" variable is

defined for convenience during modeling. Correctness of OutcomeE and Quality of RationaleE

are the two observable variables in this Evidence Model. The two observables are dependent on

DK and DesignE, as shown by the directed edges from DK and DesignE to each of them. As

noted above, conditional independence is a key concept in BINs. Achieving conditional

independence is required to achieve the computational simplicity of eq. (15) and more generally

for IRT models to apply (Mokken, 1997); the errors associated with modeling variables as

conditionally independent when in fact they are not has been documented (Mislevy & Patz,

1995). As they have been modeled so far, the observable variables are not conditionally

independent. Their dependence is in part due to their mutual dependence on DK and DesignE;

however they may be dependent in another way. Both of these variables were formed from the

same task: one task was presented to an examinee, who in turn responded to this task with a

work product, which was then submitted to the evaluation component of the Evidence Model to

form the two observables we now see in the model. Since both observables come from the work

product to a common task, there may be a dependency between the variables due to the task, not

due to the parent variable DK and DesignE. Such a concern for this type of dependency is

analogous to the presence of a method factor in factor analysis. We therefore introduce a context

variable, Design ContextE, meant to account for this possible (construct irrelevant) dependency.

Figure 5 represents a complete Design Evidence Model. Included in this model is Design

ContextE, which with directed edges to both observables represents another parent to the

observables. Note that the distribution for Design ContextE, the square to the left of the node in
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Figure 5, has no directed edges flowing into it meaning that the distribution of Design ContextE

is not a conditional distribution; Design ContextE is an exogenous variable. The two parents,

DK and DesignE and Design ContextE, represent distinct and independent portions of the

dependency between Correctness of OutcomeE and Quality of RationaleE. Alone, neither can

account for the dependency between the observables; the observables are conditionally

dependent given one (either) parent, and are conditionally independent given both parents.

Figure 5 represents a complete Design Evidence Model such that the observables are both (1)

modeled in relation to Student Model variables, and (2) conditionally independent given their

parents.

Part of an Implement Evidence Model is depicted in Figure 6. The definitions of these

variables are analogous to their counterparts defined above for the Design Evidence Model. In

addition to the data used to form these three observables, the work products examinees produce

in response to the task contain information regarding other Student Model variables. More

specifically, the work products examinees produce in response to this task lead to another

observable dependent on Network Disciplinary Knowledge and Network Modeling. This portion

of the Implement Evidence Model is depicted in Figure 7. Network Disciplinary Knowledge and

Network Modeling combine to yield DK and Network ModelingE, which is the parent of an

observable, Correctness of Outcome 2E. DK and Network ModelingE is structured in exactly the

same way as DK and ImplementE, except Network Modeling joins Network Disciplinary

Knowledge as a parent, replacing Implement.

We combine this portion of the Evidence Model with the one in Figure 6. The complete

Evidence Model is depicted in Figure 8. Note that all the observables have (the same) Implement

ContextE as one parent. Again, this is because all the observables are formed from the same
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work product from one task, and therefore might have dependencies among them above and

beyond that which can be attributable to either DK and ImplementE or DK and Network

ModelingE. A Troubleshoot Evidence Model is depicted in Figure 9. Its interpretation is

analogous to the Implement Evidence Model in Figure 8.

We have so far mentioned the different types of Evidence Models: Design, Implement,

and Troubleshoot. There are three different instantiations of each type, corresponding to the

expected difficulty of the task presented to the examinee. For instance there are Design Easy,

Design Medium, and Design Hard instantiations, which use observables extracted from Design

Easy, Design Medium, and Design Hard tasks, respectively. Naturally, it is a bit premature to

refer to a task as easier or more difficult than any other. After all, the goal is to calibrate the

model and gain information on the difficulties of the tasks. The terms "Easy," "Medium," and

"Hard" capture expert expectation, as the tasks were constructed to be of different difficulties.

For each instantiation of each type of Evidence Model there will be the appropriate

"instrumental" variable (i.e., the combination of Network Disciplinary Knowledge and another

Student Model) and the appropriate context variable, each localized to the particular instance of

the particular Evidence Mode1.7

Quantitative Modeling of Specific Relationships in the Evidence Models

Conjunctive Relationships

Conjunctive relationships are those in which multiple skills are required for performance.

In terms of BINs, this amounts to modeling the relationship as such: for a child to reach certain

values, all of its parents must have (at least) that value. Mathematically, this is a minimum

The names of all of the "instrumental" variables, context variables, and observables in Figures 5, 8, and 9 ended
with 'E', indicating that these instantiations were the Design Easy, Implement Easy, and Troubleshoot Easy
instantiations, respectively.
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function; the minimum value of the parents sets the value for the child. When using a formal

conjunction (i.e., minimum) function to define the effective theta, using the GRM will yield a

probability distribution for all the possible values. These values do not represent the probability

distribution of the child, for, as in the ceiling relationships, in using the GRM the structure of the

conjunction is lost; the GRM allows for the child to take on values higher than the minimum of

the parents. The conjunctive structure i.e., the ceiling value, is thus subsequently imposed the

probability distribution is adjusted accordingly.

Basic formulas.

Let 0, and 02 be parent variables for a child variable 0c ; furthermore, let 0, 02 , and

0c take on any of five possible states. Define

0; m min(0, , 02 ), (40)

Define a linear transformation of 0; :

9B
.. ttoK)=c9x61,9+clo. (41)

Entering this value into the GRM would lead to a probability distribution for the possible values

of 0, which would then be adjusted so that the value of 0c could not exceed the ceiling, defined

in eq. (40). This would be a model of a "leaky" conjunction.8 However, it may be the case in a

leaky conjunction that the expected value of the child is not merely a function of the minimum

value of the parents, but may also depend on which parent sets the minimum and what the value

of the other parent is. Thus, a more complete definition of the effective theta would be:

0;*, = [co x 06,* + doc I + [co, x 06: + [co, x (02 e'o)] (42)

8 The term "leaky" is used to indicate that though the value of the child has a ceiling at the minimum of its parents,
probabilities "leak" below the ceiling, meaning that it is possible for the child to take on a value below the ceiling.

46



Specifying a Complex Measurement Model 46

where the contents of the first set of brackets is just that defined in eq. (41), the contents of the

second set of brackets captures the impact of how high above the minimum 0, is, and the

contents of the third set of brackets captures the impact of how high above the minimum 02 is.9

Once the effective theta is obtained, it is entered into the GRM to obtain a probability

distribution for the value of the child. The GRM will return probabilities for all possible values,

even those outlawed by the leaky conjunction, i.e., those above 0; . To fix this, we will force the

probabilities for the values above 0; to be 0 and renormalize the others. Let us illustrate this by

turning to NetPASS.

Examples from NetPASS.

Consider again the Design Easy Evidence Model, depicted in Figure 5. DK and DesignE

is formed by a leaky conjunction of Network Disciplinary Knowledge and Design. Thus to

calculate the effective theta first instantiate equation (40):

° KandDesign min0NDK 9 ° Design) (43)

where ONDK is the value of Network Disciplinary Knowledge, and 0Des,g is the value of Design.

Next instantiate eq. (42) to calculate the effective theta:

n**
DKandDesignE E[C DKandDesignE X° D KandDesign + d DKandDesignE1

+ [c NDKE X (6NDK °DKandDesign)1+[C DesignE x (e Design °13KandDesign)1

(44)

These effective thetas are entered into the GRM to produce probabilities for the child, DK and

DesignE. Again, using the GRM as such will result in possible values for the child above the

9 Let us suppose that 01 <02 . In that case, 0; would be 01 and the value in the second set of brackets would be 0.

However, the third set of brackets would contribute to the value of 0; . If 02 <01 the situation would be reversed.

In the case where the values of the parents are equal (and hence, both parents equal the minimum) the contribution
of both brackets would be 0.
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minimum of the parents. These probabilities must be set to zero and the rest of the probabilities

in each case (i.e., each row in the table) must be renormalized. Table 9 illustrates the correct

structure of the probabilities.

The values listed in Table 9 were calculated using eq. (44) with cDKandDesignE = 2,

= -6.0, C NDKE = .2, and C DesignE .4 to reflect the opinions and expectations of SMEs.dDKandDesignE

SMEs hypothesized that the impact of Design was greater than that of Network Disciplinary

Knowledge. This is modeled by having the value of C DesignE be greater than C NDKE .1° As with the

parameters in the Student Model, no mathematical constraints have been placed on the values;

SME expectations serve as the basis for our prior distributions for the parameter to be refined by

the information in the data.

The DK and DesignE variable in the Design Easy instance is not of inferential interest; it

serves the purpose of capturing the structure of the relationship between the Student Model

variables and the observables in the Evidence Model. This "instrumental" variable is modeled in

the Design Medium and Design Hard instances in exactly the same way. That is,

and

n..
(17 DKandDesignM [C DKandDesignM X e KandDesign + d DKandDesignM]

[C NDKM x (0NDK KandDesign)] [C DesignM x (9Design eDKandDesign )]

DKandDesignH [C DKandDesignil X e KandDesign + d DKandDesignH]

[C NDKH x (9NDK KandDesign)] + [C Designil X(19 Design D KandDesign)]

(45)

(46)

10 This can be illustrated in much the same way as was the expected difference between Design, Implement, and
Troubleshoot.
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are the effective thetas for DK and DesignM and DK and DesignH, respectively." Naturally,

SME expectations for the parameters in these equations match those defined in the effective theta

equation for DK and DesignE; the expected conditional probabilities for DK and DesignM and

DK and DesignH are therefore just those given in Table 9.

Turning to the Implement Evidence Models, the specification of DK and ImplementE and

DK and Network ModelingE in the Implement Easy instance, DK and ImplementM and DK and

Network ModelingM in the Implement Medium instance, and DK and ImplementH and DK and

Network ModelingH in the Implement Hard instance mirrors that of their counterparts in the

Design Evidence Models, save for which variables are the parents. That is, to obtain the

effective thetas first instantiate eq. (40):

D Kandimplemem min(61Nix< eImplement )

ODKandNM m min(ONDK 9 0 NM)

(47)

(48)

where Ohnpie,e, is the value of Implement and 9,,,m is the value of Network Modeling. The

effective thetas for the Implement Easy instance are defined as:

DKandlmplementE [c DKandImplementE X ° KanclImplemem dimandimprementE

and

[C NDKE X (0NDK 9DKandlmplement )] [c ImplememE X (8 Implement 8DKandDesign )]

9DKandNME[CDKandNMEXeD KandNM+ d DKandNJ

+ [C NDKE X (e DK 91; KandNM)1+[CNMEXKM eD KandDesig)1

The effective thetas for the Implement Medium instance are defined as:

(49)

(50)

Note that we need not compute counterparts of eq. (43) for the Design Medium and Design Hard instances; as the

minimum of the Student Model variables, 0 DK and 0 Design , does not change from instance to instance.
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°DKandImplemeruM = [CDKandImplementld X °DKandlmplement + d DKandImplementM]
(5 1)

+ [c NDKM X (eNDK °DKandImplement)] +[C ImplementM X (eImplement °DKandDesign)]

° DKandNMM E [cDKandNMM X °D KandNM + d DKandNMM ]

+ [CNDKM X (eNDK °D KandNM)] 4.[C NMM X(81VM ° El KandDesign)]

The effective thetas for the Implement Hard instance are defined as:

and

n..
V DKandImplementH E [cDKandImplementH X°D KandImplement + dDKandlmplementH]

+ [cNDKH X (9NDK °DKandImplement)] + [c Implement!! X (19Implement °DKandDesign)]

*

°DKandNMH E [cDKandNMII X °DKandNM + dDKandNMH ]

+ [c NDKH X (°NDK °DKandNM)] + [cNMI! X (6NM ° 1, KandDesign)]

(52)

(53)

(54)

As in the Design Evidence Models, these effective thetas must be entered into the GRM,

impossible states must be zeroed out and the remaining probabilities must be renormalized.

Discussions with SMEs indicated that the values of the parameters that define the effective thetas

in the above equations are expected to be the same as their counterparts in the Design Evidence

Model instances; the conditional probabilities based on this expectation are therefore those given

in Table 9.

Regarding the Troubleshoot Evidence Models, the specification of the instrumental

variables in the Easy, Medium, and Hard instances mirrors that of their counterparts described

above. That is, to obtain the effective thetas first instantiate eq. (40):

0* .- min(DKandlTroubleshoot °NDK 9 °Troubleshoot)

0D.icandmi2 mjn(eNDK 9 °NM )
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where in addition to variables previously defined, 0Troubleshoot is the value of Troubleshoot. The

effective thetas for the Troubleshoot Easy instance are defined as:

and

DKancffroubleshootE = [cDKandTroubleshootE X ° KandTroubleshoot dDKandTroubleshootE]

[c NDKE X (6NDK KandTroubleshoot)]

[ C TrouhlachnotF X(9 Troubleshoot DKandDesign)1

n
13KandNM 2E = [cDKandNM 2E X DKandNM dDKandNM2E]

[cNDK 2E X (9NDK DKandNMA [cNM 2E X (eNM eDKandDesign )]

The effective thetas for the Troubleshoot Medium instance are defined as:

and

I DKandTroubleshootM = [cDKandTroubleshootM X DKandTroubleshoot dDKandTroubleshootM ]

[cNDKM X NDK 9DKandTroubleshoot )]

[C TroubleshootM X (eTroubleshoot eDKandDesign )]

DKandNM 2M = [C DKandNM 2 M X
n

DKandNM dDKandNM 2M]

[cNDK 2M X (9NDK 9DKandNM )] [C NM 2M X (9NM DKandDesign)]

The effective thetas for the Implement Hard instance are defined as:

and

117 DKandTroubleshooill [cDKandTroubleshootH X DKandTroubleshoot dDKandTroubleshootH]

[c NDKH X (I 9NDK 9DKandTroubleshoot )]

± [c TroubleshootH X (8Troubleshoot eDKandDesign )]

]DKandNM 2H = [cDKandNki 2 H X 9DKandNM + dDKandNM2H

[cNDK 2H X NDK ° KandNMA [cNM 2H X (eNM eDKandDesign )]

(57)

(58)

(59)

(60)

(61)

(62)

As in the Design and Implement Evidence Models, these effective thetas must be entered

into the GRM, impossible states must be zeroed out and the remaining probabilities must be

renormalized. Discussions with SMEs indicated that the values of the parameters that define the
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effective thetas in the above equations are expected to be the same as their counterparts in the

Design and Implement Evidence Model instances; the conditional probabilities based on this

expectation are therefore those given in Table 9.

Compensatory Relationships

A common method for modeling compensatory relationships is weighted sums or

averages, as in multiple factor analysis (Thurstone, 1947). When modeling a compensatory

relationship, one's first inclination may be to simply sum up the linear mappings for each parent

variable to the child. More formally, if the marginal contribution of parent variable 0, is the

linear mapping function

0 a. gll(0,). x(00+ d a (63)

then the combination all L linear mapping functions would be

L

eia = h*,...,C=E0;
l=1

(64)

The particular advantage of this strategy is that the relevance of each of the requisite skills can be

assessed (Mislevy, Senturk, et al., in press). This feature, which is advantageous when

information regarding each of the separate skills is available from either experts and/or features

of the tasks, is also problematic in that, given response data alone, the model is usually

underdetermined, due to the sum of the intercepts (Mislevy, Senturk, et al., in press). However,

in the case of NetPASS, all of the compensatory relationships in NetPASS involve a context

variable, the impact of which can be modeled without encountering problems of

underdetermination.
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Basic formulas.

Let 0, be a parent variable for T observables X 1,. . X T ;12 furthermore, let 0, be one of

the instrumental variables defined above and take on any of five states. Let 02 be a context

variable that will also serve as a parent variable for the T observables X 1,... , X T ; let this context

variable take on any of two states, corresponding to values of High and Low. Following the

discussion of the previous section, the marginal contribution of 0, is given as

0;1 = g ,,(01)= c x (01) + d (65)

and the marginal contribution of 02 is given as

0:2 g ,2(02) = c,2 x (02) + d ,2 = c,2 x (02) . (66)

Note that d,2 has been dropped on the right side of eq. (66). This occurs because if the two-level

context variable is centered around 0, e.g., with Low coded as 1 and High coded as +1, c12

captures all the information and d12 is unnecessary. To specify the expression for the effective

theta, instantiate eq. (64):

ei** = f,(0:1). c x (01) + c ,2 x (02) + di,. (67)

We can think of the compensatory relationship that involves a context variable as simply the sum

of the marginal values 0,*, and 0;2 , the impact of 0, followed by the additional impact of the

context variable, 02 . For a slightly different approach to developing a compensatory

relationship, from the perspective of moving from a conditionally dependent model to a

conditionally independent model, see Mislevy, Senturk, et al. (in press).

12 As compensatory relationships only appear in NetPASS in the modeling of observables, we refer to the child
variables as observables; naturally, there is nothing about compensatory relationships that requires the child
variables be observable.
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Examples from NetPASS.

Each instance of a Design Evidence Model contains two observables obtained from work

products produced in response to a common task. The DK and Design variable in each instance

can take on any of five values corresponding to novice, semester 1, semester 2, semester 3, and

semester 4, coded as 1-5. The Design Context variable in each instance can take on either of two

values, Low or High, which are coded as 1 and +1, respectively. 13 To obtain the effective theta

for the observables in the Design Easy instance, instantiate eq. (67)

t C tDKandDesignE X (9DKandDesignE) C WesignContextE X (0DesignContextE) dtDKandDesignE

Table 10 is a table of initial conditional probability distributions for the observables in the

(68)

Design Easy Evidence Model. These were calculated by evaluating eq. (68) with CtDKandDesignE

2, d tDKandDesignE -5.0, C tDesignContextE = .4, and reflect the opinions and expectations of the SMEs;

these values serve to define the prior distributions for the calibration of the model.

The compensatory relationship appears repeatedly in the NetPASS model. We have so

far mentioned the Design Easy instance. The Design Medium and Design Hard instances will, of

course, have the same structure, though we have the ability to quantitatively define the expected

difference in difficulty by a change in the intercept parameter. Define the effective theta for the

observables in the Design Medium instance and the observables in the Design Hard instance to

be

9
*

= C tDKandDesignM X ( 9 DKandDesignM ) CtDesignContex1M X (e DesignCon1eMM) diDKandDesign,Lf (69)

and

Though they are being specified as part of the Evidence Models, the instrumental variables representing the
combination of two Student Model variables and the Context variables are all indexed by examinees (and appear as
parent variables in the calculation of the effective thetas for observables). As such they may be thought of as
Student Model variables (i.e., latent variables modeled as being part of examinees), though the procedure adopted
here is equivalent.
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ei** = CIDKandDesignH x (9 DKandDesignH)+ C iDesignContextH X(e DesignConievH) dOKandDesignH (70)

respectively. The expected difference in difficulty between the scenarios is captured in the

expectation in the intercept terms: for the Design Easy instance, drI3KandDesignE = -5.0; for the

Design Medium instance, dIDKandDesignM -6.0; for the Design Hard instance, d iDKandDesignH

7.0.14 The expected strength of association between the observables, and (both of) the parent

variables remains unchanged, i.e., the coefficients in the Design Medium and Design Hard

scenarios are expected to be equal to their counterparts in the Design Easy scenario. Tables 11

and 12 give the conditional probabilities of response for the Design Medium and Design Hard

instances, respectively. Again, the values used to calculate the expert expectations will serve as

the basis for the priors in estimating the parameters in the model.

Consider now the Implement Evidence Model given in Figure 8. Like the Design

Evidence Model, there are three instantiations of the Implement Evidence Model: Easy, Medium,

and Hard. With more observables and more parent variables, the Implement Evidence Models

are slightly different than the Design Evidence Models. Fundamentally however, they are the

same; for each observable there are two parents: one is the combination of two Student Model

variables (that can take on any of five values) and the other is a context variable (that can take on

either of two values) designed to account for the common origin of the observables and induce

conditional independence. Calculating the conditional probabilities for an Implement Evidence

Model consists of simply repeating the procedure for setting up a Design Evidence Model twice;

we calculate two effective thetas instead of one. Furthermore, the anticipated values for the

coefficients and intercepts in the calculation of both effective thetas in the various instances of

the Implement Evidence Model are hypothesized to be equal to those in the corresponding

14 See note 5
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instances of the Design Evidence Model. For the Implement Easy instance, we define the

effective thetas as

C tDKandImpIementE x (9 DKandImplementE)

and

tImplementContextE x ImplementContextE dIDKandImplementE

*4.

= c 1DKandNME x (9 DKandNME C tImplementContextE x (0 ImplementContextE) + d OKandNME

(71)

(72)

where the coefficients and the intercepts in the expressions above are expected to take on the

same values as those listed for the observables in the Design Easy instance above. The expected

conditional probabilities for the observables in the Implement Easy instance are just those given

in Table 10.

To calculate the expected conditional probabilities for the observables in the Implement

Medium instance and the Implement Hard instance the procedure just described is repeated. The

effective thetas for the Implement Medium and Implement Hard instances are:

and

tl = C tOKandImplementM x (e DKandImplementM)

+ ctImplementContextM x (e ImplementContextM) d IDKandImplementM

= c tDKandNMM x DKandNMM) C tImplementContextM x (e ImplementContextM) d tDKandNMM

0:1* c tDKandImplementlf x ( 9 DKandImplementH)

+ ctImplementContextH x ImplementContextH) d rDKandImplementH

e12 tOKandNMH x ( 9 DKandNMH) C tImplementContextH x (e ImplementContextH ) d tOKandNMH

(73)

(74)

(75)

(76)

where the coefficients and the intercepts in the expressions above are expected to take on the

same values as those listed for the observables in the Design Medium instance and the Design
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Hard instance. The distributions corresponding to SME expectation for the Implement Medium

and Implement Hard instances are therefore those given in Tables 11 and 12, respectively.

With these procedures, the quantification of the instances of the Troubleshoot Evidence

Model is straightforward. As with the Implement Evidence Model instances, we calculate two

effective thetas instead of one. And again, the expert expectations for the values for the

coefficients and intercepts in the calculation of both effective thetas in the instances of the

Troubleshoot Evidence Model are hypothesized to be equal to those in the Design and

Implement Evidence Models. For the Troubleshoot Easy instance, we define the effective thetas

as

and

0 : = c rDICand7'roubleshootE x (19 DKandTroubleshootE)

+ c trroubleshoolContextE x (9TroubleshootContextE) + d IDKandTroubleshootE

n
Ut 2 = C tDKandNM 2E x (e DKandNM 2E)

+ C tTroubleshootContextE x (eTroubleshootConiextE) + d IDKandNetworkModeling2E

The effective thetas for the Troubleshoot Medium and Troubleshoot Hard instances are

and

et: = cOKand7'roubleshoothf X (e DKand7'roubleshootM)

+ c tTroubleshootContexiM x (eTroubleshootContexiM)+ d OKand7'roubleshootM

Ut 2 = ctDKandNM 2M x (9 DKandNM 2M)

+ c iTroubleshootContext M X (eTroubleshooiContextM) + d OKandNetworkModeling2M

t/ ii = c IDKandTroubleshootH x (0 DKandTroubleshootH )

+ c ffroubleshooiConiextH X (eTroubleshooiContextH) + dtDKandTroubleshootH

9:2 = c IDKandNM 2 H X (I9DKandNM 2H)

+ c tTroubleshootContextH X (eTroubleshootContextH ) 1 + d IDKandNetworkModeling2H
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As before, the expected condition distributions for the Easy, Medium, and Hard instances are

those given in Tables 10, 11, and 12, respectively.

Exogenous Variable

In the Evidence Models, only the Context variables are exogenous. They are modeled as

taking on values of 1 and +1, each with probability .5. Modeling the values they can take on as

symmetric around zero allows for their incorporation in the effective theta for observables

without an intercept term (eq. 66)).

Summary

In the preceding sections section the variables in the three instances of the three Evidence

Models have been quantitatively specified. In terms of the joint probability distribution in eq.

(15), we have specified P(X I 0, a) and hinted at the P(q) terms. P(X I 0, r) refers to the

distribution of the observable variables conditional on the Student Model variables, 0 , and the

conditional probabilities, it . In terms of the effective theta method, X are the observable

variables, n are the conditional probabilities themselves, and 11 consist of the various c and d

parameters used to define the conditional distributions. Note that we need not specify the

conditional probabilities given the parameters that govern them (i.e., the P(X I 0,7t) terms),

because the conditional probabilities are a function of the c and d parameters. In utilizing the

GRM, we define the conditional probabilities as a mathematical function of the c and d

parameters. Given the c and d parameters, we calculate the conditional probabilities. In other

words, given the c and d parameters, the conditional probabilities are known with certainty.
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Specification of the Priors

So far, all the terms in eq. (15) have been fully specified except PO,) and P(q). P(X.)

refers to the distribution of the parameters that define the distributions of examinee proficiencies,

the various c, and d, and e parameters in the Student Model. In detailing the expectations of

SMEs, we have already described some aspect of the distribution, namely, the value that

corresponds to modeling particular expectations. To enable Bayesian estimation, parameters

must not be fixed, but modeled as random variables. Leaning on intuition and past experience in

IRT, we define the priors for all intercepts to be distributed normally with mean defined by

expert expectation and variance of 1. Similarly, we define the priors for all coefficients to be

distributed normally with mean defined by expert expectation and variance of 1, truncated at 0 to

force all the coefficients to be positive. P(q) refers to the distribution of the parameters that

define the conditional probability distributions, the various c and d parameters in the calculation

of the effective thetas in the Evidence Models. As before, we define the priors for all intercepts

to be normally distributed with mean defined by expert expectation and variance of 1 and the

priors for all coefficients to be normally distributed with mean defined by expert expectation and

variance of 1, truncated at 0.

Markov Chain Monte Carlo (MCMC) Estimation

The Full Bayesian Model

We have devoted some time to setting up the Bayesian model for the NetPASS

assessment. To do so, we have qualitatively defined relationships among the various variables in

the NetPASS model to determine the structure of the probability distributions and then

quantitatively specified the relationships, filling in the contents of the probability distributions.
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Indeed, all terms on the right side of eq. (15) have been specified. Of course, all of the

conditional probability distributions were based on the opinions of SMEs. If we were certain the

conditional probability distributions were correct, we could proceed by administering the

NetPASS assessment to examinees and input their values for the observables and draw

inferences about their values on Student Model variables. However, while we expect the views

of the SMEs to be correct (at least more correct than those of anyone else), we seek to augment

the information gathered from discussions with experts with actual data. That is, the model as

we have so far specified it represents our prior beliefs about the relationships of several variables

and the characteristics of the tasks presented to examinees; we will collect data to update our

beliefs regarding the relationships and the task characteristics. As with all Bayesian models, our

updated beliefs will come in the form of posterior distributions.

With a model as complex as the NetPASS model straightforward application of Bayes'

Theorem is computationally intractable. What's more, our current aim is refine our beliefs about

the parameters that govern the relationships among variables. We are therefore interested in the

posterior distributions for these parameters, which will represent the incorporation of information

from the data to our prior beliefs based on expert opinion. We seek to condition on observed

data and refine our beliefs about the parameters, which for all unobserved parameters will be

(following Bayes' Theorem) proportional to the prior for that parameter multiplied by the

conditional probability of the observed variables given the unobserved parameters. Expressed

mathematically we aim to arrive at:

P(0, 7r, TI, x). P(x 0,7)x p(e x)xp(x)x p(ir Ti)x p(11) (83)

Here, P(0 ,n, I X) is the posterior distribution of all the unobservable parameters: examinee

parameters (0 , the Student Model variables), examinee hyperparameters (i. , those parameters
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which define the distributions of the Student Model variables), the conditional probabilities (7r ),

and the task parameters (II, which define the conditional probabilities),I5

An analytic solution for the posteriors for this model is computationally intractable and

may very well be impossible. Instead, we pursue an empirical approximation via Markov chain

Monte Carlo (MCMC) estimation. MCMC estimation provides an adequate and appropriate

framework for computation in Bayesian analyses (Gelman et al., 1995). A complete treatment

and description of MCMC estimation is beyond the scope and intent of this work; suffice it to

say that for our current purposes, MCMC estimation consists of drawing from a series of

distributions that is in the limit equal to drawing from the true posterior distribution (Gilks et al.,

1996). That is, to empirically sample from the posterior distribution, it is sufficient to construct a

Markov chain that has the posterior distribution as its stationary distribution. One general

method for constructing such a chain is presented in the next section. For a more complete

discussion of MCMC techniques, see Brooks, (1998) and Gilks et al. (1996).

Metropolis-Hastings Sampling

One method for constructing a Markov chain with the distribution of interest as the

stationary distribution is due to a generalization (Hastings, 1970) of a method originally

presented by Metropolis et al., (1953). In Metropolis-Hastings sampling (Hastings, 1970), a

proposal distribution is selected to aid in the sampling scheme. Given the current value of the

chain, a value is drawn from the proposal distribution; this value is then considered as a

candidate for the next value in the chain.

15 Note the similarity between eq. (82), the posterior distribution, and eq. (15), the joint distribution.

61



Specifying a Complex Measurement Model 61

Let 140) be the target distribution of interestI6 and q(o) be the proposal distribution. It

can be shown that, under regularity conditions (see Roberts, 1996 and Tierney, 1996), the

distribution of values of iterations of a Markov chain asymptotically converges to its stationary

distribution if the value drawn from the proposal distribution, y , is accepted with probability

a(xz , y) = min {1, ,r(Y) q(xz I Y)
g(xz ) q(y I xz )

(84)

where x2 is the current value in the chain (see Chib and Greenberg, 1995 for a non-technical

derivation). Interestingly enough, the procedure requires no particular parametric form of the

proposal distribution. Note that the proposal distribution may be written as a conditional

distribution (as it is in eq. (84)). Thus, q(y I x2) is the probability of selecting y from the

proposal distribution, given the current value is x2. Similarly, q(xz y) is the probability of

selecting x2 from the distribution, given the value is y .

Metropolis Sampling

In this section, the Metropolis sampler (Metropolis et al., 1953) is presented as a special

case of the Metropolis-Hastings sampler. Observe that if we select q(o) that is symmetric with

respect to its arguments, i.e., q(y I xz ) =q(x2 I y) , the proposal distribution drops out of the

equation for a , the probability of accepting y as the z+lth value in the chain. A convenient

choice for a distribution symmetric about its arguments is the normal distribution with mean

16 Note that it(o) refers to the distribution of interest, i.e., the joint posterior distribution, not the conditional

probabilities in the model, it .
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defined by the current value.'? Choosing q(o) to be a distribution that is symmetric reduces the

computation in eq. (84); the acceptance probability then becomes

ot(xz , y) = min
{1 (741}9r(xz )

(85)

Note also that 11.(0) appears in both the numerator and denominator, which means that we are

only required to know 740) up to a constant of proportionality. This is the key feature of

MCMC techniques that allows for estimation of complex Bayesian models, where the calculation

of a posterior distribution (eq. (2)) is often intractable, but the posterior can be defined up to a

constant of proportionality. In the case of NetPASS, the posterior distribution (eq. (83)) is

specified only up to a constant of proportionality.

The Algorithm

Let z9 be the set of parameters that define the joint posterior distribution, i.e., the

parameters that define the model. Initialize the variables in the vector as 0° . For the z+lth

iteration:

Draw OY from the proposal distribution, q(z5 I 19z );

Accept t9Y as the value for the z+lth iteration with probability:

ot032,0Y) = min {l, (71-(zY) )}

Otherwise, retain otz as the value in the z+lth iteration.

17 In this case, q(y I xz ) would be a normal distribution with a mean of x ; q(xz I y) would be a normal

distribution with a mean of y .
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Asymptotically, the distribution of draws converges to the stationary distribution, x(0), the true

posterior distribution. Thereafter, draws from the distribution represent sampling from the

posterior. The empirical distribution of many draws from this distribution for any parameter

approximates its marginal distribution.

MCMC theory states that, asymptotically, the chain will converge to its stationary

distribution. Empirical Monte Carlo distributions are representative of the posterior only after

the chain has converged to its stationary distribution. Values from iterations prior to

convergence will be discarded as "bum-in" values. There exist a number of procedures and

techniques for determining the number of iterations necessary for convergence (e.g., Brooks &

Gelman, 1998; Gelman & Rubin, 1992; Geweke, 1992; Heidelberger & Welch, 1983; Raftery &

Lewis, 1992; see Brooks & Roberts, 1996, and Carlin, 1996 for reviews). We employ the

procedure similar to that due to Gelman and Rubin (1992) based on classical analysis of

variance; specifically we employ the extension of this procedure given by Brooks and Gelman

(1998). This convergence assessment procedure calls for multiple chains to be run from

overdispersed starting values. Two estimates of the variation inherent in the chain are computed.

First, the average "within-chain" variation, the average of the individual chains' central 80%

intervals is computed as an underestimate of the true variation. Next, the values from all chains

are pooled together and the central 80% interval of this "pooled" chain is computed as an

overestimate of the true variation. Upon convergence, the underestimate and the overestimate

will converge to same value and the ratio of the overestimate to the underestimate should

approach 1 (from above). There exist multivariate generalizations of this technique (Brooks &
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Gelman, 1998), though we opt to monitor each parameter in a univariate manner so as to locate

those parameters seemingly responsible for slow (or lack of) convergence.' 8

Empirical Analysis

The computer program WinBUGS 1.3 (Spiegelhalter et al., 1995) was used to obtain a

Metropolis sampling solution to the model. Three chains were run in parallel for 100,000

iterations, each beginning with quite different starting values. The data set consisted of 195

examinees; taking between one and seven of the nine scenarios (typically, each scenario requires

an hour and a half to complete), on average there were just over 25 values for each of the

observables. Analysis of convergence consisted of monitoring the overestimate and the

underestimate of the true posterior variance as described above and detailed in Brooks and

Gelman (1998). Consideration of these convergence diagnostics indicated that as many as

36,000 iterations are necessary to achieve convergence. This slow convergence is in part due to

the slow "mixing" of each individual chain due to considerably high autocorrelations, which in

some cases was as high as .50, even for correlations of lag 40. In these cases, the individual

chains mix quite slowly, thus chains starting from overdispersed starting values require a great

number of iterations to converge.

Prior to data analysis, the first 40,000 iterations of each chain were discarded as "burn-in

values" leaving 60,000 iterations per chain. These remaining iterations were pooled in the

analysis of the final data for several reasons. First, all these iterations are empirical

representations of the true posterior (i.e., values occur with the relative frequencies of the true

18 At best, we can only determine which parameters for which it is doubtful that they have reached their true
(marginal) posterior, which is of interest. We cannot determine with certainty if such parameters are "responsible"
for slow convergence. Removing or fixing parameters that are seemingly slow to converge does not guarantee
increased speed of convergence; conversely, such parameters may converge rapidly if other, seemingly
nonproblematic parameters are removed or fixed.
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posterior). Second, though there exists autocorrelations among the values within each chain,

there is no correlation among the values between parallel chains i.e., the chains are independent.

Pooling the values from parallel multiple chains serves to eliminate any serial dependence

(Gelman, 1996). Finally, the use of multiple chains with overdispersed starting not only serves

to detect lack of convergence, but also ensures that all chief regions of the posterior distribution

are accounted for in the analysis (Gelman, 1996).

Empirical Results

A question of immediate interest concerns the impact of the data on the posteriors. A

metric for summarizing the impact is the percent increase in precision, given as

(posterior SD)-2 (prior SD)-2
100x

(prior SD)-2
; a value of 0 indicates no new information is gained by

incorporating the data while a value of 100 indicates that there is twice as much information

regarding a parameter after incorporating the data. For the most part, there were mild increases

in precision for the parameters in the Student Model. Likewise, there were mainly mild

increases in the precision for the parameters that define the conditional distributions of the

instrumental variables in each of the instantiations of the Evidence Models. Several large

increases in posterior precision were observed in the parameters that define the conditional

distributions of the observables. This is not a surprising result, as the evidence contained in the

data, i.e., known values for certain observables, inform directly on the conditional distributions

of observables, but only indirectly (via the propagation throughout the BIN) on the parameters

that define the conditional distributions that are somewhat removed from the observables.
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Conclusion and Pointers to the Future

One step in the immediate future is the assessment of model fit. Strategies for fit

assessment include those detailed by Gelman et al., (1995) and Gilks, Richardson, and

Spiegelhalter (1996). Many promising techniques involve the use of replicated data distributions

(e.g., Mislevy, Senturk, et al., in press). Avenues for investigating model fit include (among

others) analysis of the structural representations of the model. For instance, in the Student

Model, Networking Disciplinary Knowledge served as a ceiling for Network Modeling; one

alternative is to remove this constraint and investigate the impact. Other potential routes include

relaxing the assumption of roughly spaced intervals of the variables or testing the necessity of

the context variables in the Evidence Models. Other areas of future work concerning NetPASS

include the collection of more data and the construction and investigation of new tasks.

An effort has been put forth to document the processes involved in the quantitative

specification of the expected relationships between latent and observed variables and the

subsequent estimation of the model via MCMC procedures. It has been emphasized that the

procedures and techniques detailed and illustrated above have quite broad applicability for

modeling in general and for modeling educational assessments in particular. That is, the use of

Bayesian Inference Networks as a means of propagating information in assessment contexts is

consistent with the role of assessment as an evidentiary argument regarding examinees. To that

end, the construction and estimation of such networks is of the utmost importance. It is our hope

that this work will lead to further research in the area of constructing and estimating similar

measurement models used in complex assessments.
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Samejima's Graded Response Model
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Network
Proficiency ° NetworkProficiency e*Design

Pr (Design = k)

Novice
Semester

1

Semester
2

Semester
3

Semester
4

Novice 1 -3.8 0.689974 0.252701 0.049162 0.00705 0.001113

Semester 1 2 -1.8 0.231475 0.458499 0.252701 0.049162 0.008163

Semester 2 3 0.2 0.039166 0.192309 0.458499 0.252701 0.057324

Semester 3 4 2.2 0.005486 0.033679 0.192309 0.458499 0.310026

Semester 4 5 4.2 0.000746 0.00474 0.033679 0.192309 0.768525

° D"esign c Design X ° NetworkProficiency dDesign

° D"esign 2 X NetworkProficiency (-5 .8)

Table 1: Conditional Probability Table for Design

Network
Proficiency eNetworkProficiency 6 plement

Pr (Implement = k)

Novice 1

Semester
2

Semester
3

Semester
4

Novice 1 -4.2 0.768525 0.192309 0.033679 0.00474 0.000746
Semester 1 2 -2.2 0.310026 0.458499 0.192309 0.033679 0.005486
Semester 2 3 -0.2 0.057324 0.252701 0.458499 0.192309 0.039166
Semester 3 4 1.8 0.008163 0.049162 0.252701 0.458499 0.231475
Semester 4 5 3.8 0.000746 0.00474 0.033679 0.192309 0.768525

19.*Implement c Implement X 9NelworkProfrciency d Implement

elmplemen! a 2 X 0 NehvorkProficiency + (-6.2)

Table 2: Conditional Probability Table for Implement
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Network
Proficiency eNetworkProficiency °T7oubleshoot

Pr (Troubleshoot = k)

Novice
Semester

1

Semester
2

Semester
3

Semester
4

Novice 1 -5.0 0.880797 0.101217 0.015514 0.002137 0.000335

Semester 1 2 -3.0 0.5 0.380797 0.101217 0.015514 0.002473

Semester 2 3 -1.0 0.119203 0.380797 0.380797 0.101217 0.017986

Semester 3 4 1.0 0.017986 0.101217 0.380797 0.380797 0.119203

Semester 4 5 3.0 0.002473 0.015514 0.101217 0.380797 0.5

eZubleshoot c Troubleshoot X 9NetworkProficiency dTroubleshoot

eT7oubleshoot = 2 x 0NelworkProficiency + ( -7.0)

Table 3: Conditional Probability Table for Troubleshoot

Network
Disciplinary
Knowledge

A
NetworkDisciplinaryKnowledge a

uNenvorkModeling

Pr (Network Modeling = k)

Novice
Semester

1

Semester
2

Semester
3

Semester
4

Novice 1 -6.0 0.952574 0.040733 0.005782 0.000788 0.000123

Semester 1 2 -4.0 0.731059 0.221516 0.040733 0.005782 0.000911

Semester 2 3 -2.0 0.268941 0.462117 0.221516 0.040733 0.006693

Semester 3 4 0.0 0.047426 0.221516 0.462117 0.221516 0.047426

Semester 4 5 2.0 0.006693 0.040733 0.221516 0.462117 0.268941

0.4NetworkModeling C XNetworkModeling NetworkDisciplinaryKnowledge + d NenvorkModeling

° N.etworkModeling :=7:- 2 x eNetworkDisciplinaryKnowledge + (-8.0)

Table 4: Unstructured Conditional Probability Table for Network Modeling
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Network
Disciplinary
Knowledge

19
NetworkDisciplinaryKnowledge

6.Network Modeling

Pr (Network Modeling = k)

Semester Semester
Novice 1 2

Semester
3

Semester
4

Novice 1 -6.0 1.0 0 0 0 0

Semester i 2 -4.0 0.767456 0.232544 0 0 0

Semester 2 3 -2.0 0.282331 0.485125 0.232544 0 0

Semester 3 4 0.0 0.049787 0.232544 0.485125 0.232544 0

Semester 4 5 2.0 0.006693 0.040733 0.221516 0.462117 0.268941

Table 5: Corrected Conditional Probability Table for Network Modeling

P(NP=k)

NDK eNDK
Network 0NMModeling

0; Novice Sem 1 Sem 2 Sem 3 Sem 4

Novice 1 Novice 1 -3 0.5 0.380797 0.101217 0.015514 0.002473

Sem 1 2 Novice 1 -2 0.268941 0.462117 0.221516 0.040733 0.006693

Sem 1 2 Sem 1 2 -1 0.119203 0.380797 0.380797 0.101217 0.017986

Sem 2 3 Novice 1 -1 0.119203 0.380797 0.380797 0.101217 0.017986

Sem 2 3 Sem 1 2 0 0.047426 0.221516 0.462117 0.221516 0.047426

Sem 2 3 Sem 2 3 1 0.017986 0.101217 0.380797 0.380797 0.119203

Sem 3 4 Novice 1 0 0.047426 0.221516 0.462117 0.221516 0.047426

Sem 3 4 Sem 1 2 1 0.017986 0.101217 0.380797 0.380797 0.119203

Sem 3 4 Sem 2 3 2 0.006693 0.040733 0.221516 0.462117 0.268941

Sem 3 4 Sem 3 4 3 0.002473 0.015514 0.101217 0.380797 0.500000

Sem 4 5 Novice 1 1 0.017986 0.101217 0.380797 0.380797 0.119203

Sem 4 5 Sem 1 2 2 0.006693 0.040733 0.221516 0.462117 0.268941

Sem 4 5 Sem 2 3 3 0.002473 0.015514 0.101217 0.380797 0.500000

Sem 4 5 Sem 3 4 4 0.000911 0.005782 0.040733 0.221516 0.731059

Sem 4 5 Sem 4 5 5 0.000335 0.002137 0.015514 0.101217 0.880797

Table 6: Unstructured Conditional Probability Table for Network Proficiency
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NDK BNDK
Network
Modeling

e" 0;
P(NP=k)

Novice Sem 1 Sem 2 Sem 3 Sem 4

Novice 1 Novice 1 -3 1 0 0 0 0

Sem 1 2 Novice 1 -2 0.36788 0.63212 0 0 0

Scm 1 2 Sem 1 2 -1 0.23840 0.76160 0 0 0

Sem 2 3 Novice 1 -1 0.13534 0.43233 0.43233 0 0

Sem 2 3 Sem 1 2 0 0.06487 0.30301 0.63212 0 0

Sem 2 3 Sem 2 3 1 0.03597 0.20243 0.76160 0 0

Sem 3 4 Novice 1 0 0.04979 0.23254 0.48513 0.23254 0

Sem 3 4 Sem 1 2 1 0.02042 0.11491 0.43233 0.43233 0

Sem 3 4 Sem 2 3 2 0.00916 0.05572 0.30301 0.63212 0

Sem 3 4 Sem 3 4 3 0.00495 0.03103 0.20244 0.76159 0

Sem 4 5 Novice 1 1 0.01799 0.10122 0.38080 0.38080 0.11920

Sem 4 5 Sem 1 2 2 0.00669 0.04073 0.22152 0.46212 0.26894

Sem 4 5 Sem 2 3 3 0.00247 0.01551 0.10122 0.369997 0.50000

Sem 4 5 Sem 3 4 4 0.00091 0.00578 0.04073 0.22152 0.73106

Sem 4 5 Sem 4 5 5 0.00034 0.00214 0.01551 0.10122 0.88079

Table 7: Corrected Conditional Probability Table for Network Proficiency

Pr (Network Disciplinary Knowledge = k)

Novice Semester 1 Semester 2 Semester 3 Semester 4

.01477 .08498 .35042 .40798 .14185

Table 8: Probability Table for Network Disciplinary Knowledge
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Network
Disciplinary
Knowledge Design

Pr (NDK and DesignE = k)

Novice Semester 1 Semester 2 Semester 3
Semester

4

Novice Novice 1.0 0 0 0 0

Novice Semester 1 1.0 0 0 0 0

Novice Semester 2 1.0 0 0 0 0

Novice Semester 3 1.0 0 0 0 0

Novice Semester 4 1.0 0 0 0 0

Semester 1 Novice 1.0 0 0 0 0

Semester 1 Semester 1 0.36788 0.63212 0 0 0

Semester 1 Semester 2 0.30638 0.69362 0 0 0

Semester 1 Semester 3 0.25799 0.74201 0 0 0

Semester 1 Semester 4 0.22159 0.77841 0 0 0

Semester 2 Novice 1.0 0 0 0 0

Semester 2 Semester 1 0.33548 0.66452 0 0 0

Semester 2 Semester 2 0.06487 0.30301 0.63212 0 0

Semester 2 Semester 3 0.05002 0.25636 0.69362 0 0

Semester 2 Semester 4 0.0398 0.21819 0.74201 0 0

Semester 3 Novice 1.0 0 0 0 0

Semester 3 Semester 1 0.30638 0.69362 0 0 0

Semester 3 Semester 2 0.05676 0.27872 0.66452 0 0

Semester 3 Semester 3 0.00916 0.05572 0.30301 0.63212 0

Semester 3 Semester 4 0.00696 0.04306 0.25636 0.69362 0

Semester 4 Novice 1.0 0 0 0 0

Semester 4 Semester 1 0.28058 0.71942 0 0 0

Semester 4 Semester 2 0.05002 0.25636 0.69362 0 0

Semester 4 Semester 3 0.00795 0.04881 0.27872 0.66452 0

Semester 4 Semester 4 0.00091 0.00578 0.04073 0.22152 0.73106

DKandDesignE [C DKandDesignE X 9 KandDesign d DKandDesignE]

+ [C NDKE X ( 9 NDK a Ds KandDesign)] + [C DesignE X (0 Design e DKadDesign)]

DKa + -60] + [.2 x (O 91 D KandDesign )1+ [.4 x (ODesigne D KandDesignE ._. [2 x O ndDesign 9DKandDesign)]

Table 9: Conditional Probability Table for NDK and DesignE
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DKandDesignE DKandDesignE
Design a

ContextE DesignContextE 0,"

P(X=k)

Low Medium High

Novice 1 Low -1 -1.7 0.802184 0.19332 0.004496

Novice 1 High 1 -1.3 0.645656 0.344392 0.009952

Semester 1 2 Low -1 -0.7 0.354344 0.613361 0.032295

Semester 1 2 High 1 -0.3 0.197816 0.733045 0.069138

Semester 2 3 Low -1 0.3 0.069138 0.733045 0.197816

Semester 2 3 High 1 0.7 0.032295 0.613361 0.354344

Semester 3 4 Low -1 1.3 0.009952 0.344392 0.645656

Semester 3 4 High 1 1.7 0.004496 0.19332 0.802184

Semester 4 5 Low -1 2.3 0.001359 0.06778 0.930862

Semester 4 5 High 1 2.7 0.000611 0.031685 0.967705

et CIDKandDesignE X (e DKandDesignE) C tDes ignContextE x (e DesignContextE) dlDKandDesignE

0:. = 2 X (0 DKandDesignE) + .4 x (OpesigncontextE ) + (-5.0)

Table 10: Conditional Probability Table for the observables in the Design Easy Evidence Model

DKandDesignM eDKandDesignM
esi

gn
CoDntextM 19DesignContexiM 0,"

P(X=k)

Low Medium High

Novice 1 Low -1 -2.2 0.916827 0.081514 0.001659

Novice 1 High 1 -1.8 0.832018 0.164297 0.003684

Semester 1 2 Low -1 -1.2 0.598688 0.389184 0.012128

Semester 1 2 High 1 -0.8 0.401312 0.572091 0.026597

Semester 2 3 Low -1 -0.2 0.167982 0.748846 0.083173

Semester 2 3 High 1 0.2 0.083173 0.748846 0.167982

Semester 3 4 Low -1 0.8 0.026597 0.572091 0.401312

Semester 3 4 High 1 1.2 0.012128 0.389184 0.598688

Semester 4 5 Low -1 1.8 0.003684 0.164297 0.832018

Semester 4 5 High 1 2.2 0.001659 0.081514 0.916827

et** = C tDKandDesignM X (0 DKandDesignM) C tDesignContextM x (e DesignContextM) d IDKandDesignM

et* = 2 x DKandDesignM) .4 X (e DesignContextM) 4- ( -6.0)

Table 11: Conditional Probability Table for the observables in the Design Medium Evidence
Model
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DKandDesignH DKandDesignH
Design

ContextH OpesigncontextH 9:*

P(X=k)

Low Medium High

Novice 1 Low -1 -2.7 0.967705 0.031685 0.000611

Novice 1 High 1 -2.3 0.930862 0.06778 0.001359

Semester 1 2 Low -1 -1.7 0.802184 0.19332 0.004496

Semester 1 2 High 1 -1.3 0.645656 0.344392 0.009952

Semester 2 3 Low -1 -0.7 0.354344 0.613361 0.032295

Semester 2 3 High 1 -0.3 0.197816 0.733045 0.069138

Semester 3 4 Low -1 0.3 0.069138 0.733045 0.197816

Semester 3 4 High 1 0.7 0.032295 0.613361 0.354344

Semester 4 5 Low -1 1.3 0.009952 0.344392 0.645656

Semester 4 5 High 1 1.7 0.004496 0.19332 0.802184

0: = CiDKandDesignH X (6 DKandDesignH) C toesignContext11 X (e DesignConlextH) dOKandDesignH

Bt = 2 x (BDKandDesignH) + .4 x (B 9DesignContertH) + (-7 .0)

Table 12: Conditional Probability table for the observables in the Design Hard Evidence Model
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